No full text
Eprint already available on another site (E-prints, working papers and research blog)
A Riemannian geometry for low-rank matrix completion
Mishra, Bamdev; Karavadi, Adithya Apuroop; Sepulchre, Rodolphe
2012
 

Files


Full Text
No document available.

Send to



Details



Abstract :
[en] We propose a new Riemannian geometry for fixed-rank matrices that is specifically tailored to the low-rank matrix completion problem. Exploiting the degree of freedom of a quotient space, we tune the metric on our search space to the particular least square cost function. At one level, it illustrates in a novel way how to exploit the versatile framework of optimization on quotient manifold. At another level, our algorithm can be considered as an improved version of LMaFit, the state-of-the-art Gauss-Seidel algorithm. We develop necessary tools needed to perform both first-order and second-order optimization. In particular, we propose gradient descent schemes (steepest descent and conjugate gradient) and trust-region algorithms. We also show that, thanks to the simplicity of the cost function, it is numerically cheap to perform an exact linesearch given a search direction, which makes our algorithms competitive with the state-of-the-art on standard low-rank matrix completion instances.
Disciplines :
Computer science
Author, co-author :
Mishra, Bamdev ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Karavadi, Adithya Apuroop
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
A Riemannian geometry for low-rank matrix completion
Publication date :
2012
Available on ORBi :
since 25 December 2012

Statistics


Number of views
123 (18 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi