[en] By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape-dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for similar to 9 nm nanospheres and similar to 8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles.
Disciplines :
Physics
Author, co-author :
Disch, S.
Wetterskog, E.
Hermann, Raphaël ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Wiedenmann, A.
Vainio, U.
Salazar-Alvarez, G.
Bergstrom, L.
Brueckel, Th
Language :
English
Title :
Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bader S D 2006 Rev. Mod. Phys. 78 1
McHenry M E and Laughlin D E 2000 Acta Mater. 48 223
Pankhurst Q A, Connolly J, Jones S K and Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167
Gossuin Y, Hocq A, Vuong Q L, Disch S, Hermann R P and Gillis P 2008 Nanotechnology 19 475102
Gossuin Y, Disch S, Vuong Q L, Gillis P, Hermann R P, Park J H and Sailor M 2010 Contrast Media Mol. Imaging 5 318
Alivisatos A P 1996 Science 271 933
Kruis F E, Fissan H and Peled A 1998 J. Aerosol Sci. 29 511
Raj K and Moskowitz R 1990 J. Magn. Magn. Mater. 85 233
Sun S, Murray C B, Weller D, Folks L and Moser A 2000 Science 287 1989
Held G A, Grinstein G, Doyle H, Sun S and Murray C B 2001 Phys. Rev. B 64 012408
Morales M P, Serna C J, Bødker F and Mørup S 1997 J. Phys.: Condens. Matter 9 5461
Kodama R H and Berkowitz A E 1999 Phys. Rev. B 59 6321
Kodama R H, Berkowitz A E, McNiff E and Foner S 1996 Phys. Rev. Lett. 77 394
Curiale J, Granada M, Troiani H E, Sanchez R D, Leyva A G, Levy P and Samwer K 2009 Appl. Phys. Lett. 95 043106
Dey P, Nath T K and Banerjee A 2007 Appl. Phys. Lett. 91 012504
Golosovsky I V, Mirebeau I, André G, Kurdyukov D A, Kumzerov Y A and Vakhrushev S B 2001 Phys. Rev. Lett. 86 5783
Golosovsky I V, Tovar M, Hoffman U, Mirebaeu I, Fauth F, Kurdyukov D A and Kumzerov Y A 2006 JETP Lett. 83 298
Tronc E, Prené P, Jolivet J P, Dormann J L and Grenèche J M 1997 Hyperfine Interact. 112 97
Wang C H, Baker S N, Lumsden M D, Nagler S E, Heller W T, Baker G A, Deen P D, Cranswick L M D, Su Y and Christianson A D 2011 Phys. Rev. B 83 214418
Restrepo J, Labaye Y and Grenèche J M 2006 Physica B 384 221
Mazo-Zuluaga J, Restrepo J and Mejía-López J 2007 Physica B 398 187
Brice-Profeta S, Arrio M A, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Nogues M, Chaneac C, Jolivet J P and Sainctavit P 2005 J. Magn. Magn. Mater. 288 354
Helgason O, Rasmussen H K and Morup S J 2006 J. Magn. Magn. Mater. 302 413
Jean Daou T, Grenèche J M, Lee S-J, Lee S, Lefevre C, Bégin-Colin S and Pourroy G 2010 J. Phys. Chem. C 114 8794
Wiedenmann A 2001 Physica B 297 226
Krycka K L et al 2010 Phys. Rev. Lett. 104 207203
Krycka K L et al 2010 J. Appl. Phys. 107 09B525
Ahniyaz A, Sakamoto Y and Bergström L 2007 Proc. Natl Acad. Sci. USA 104 17570
Song Q and Zhang Z J 2004 J. Am. Chem. Soc. 126 6164
Salazar-Alvarez G et al 2008 J. Am. Chem. Soc. 130 13234
Kohlbrecher J, Wiedenmann A and Wollenberger H 1997 Z. Phys. 204 1
Häggström L, Kamali S, Ericsson T, Nordblad P, Ahniyaz A and Bergström L 2008 Hyperfine Interact. 183 49
Turkheimer F E, Hinz R and Cunningham V J 2003 J. Cer. Blood Flow Metab. 23 490
Burnham K P and Anderson D R 2002 Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Berlin: Springer)
Schabes M E and Bertram H N 1988 J. Appl. Phys. 64 1347
Tartaj P, González-Carreño T and Serna C J 2003 J. Phys. Chem. B 107 20
Kim T and Shima M 2007 J. Appl. Phys. 101 09M516
Wang J, Wu W, Zhao F and Zhao G 2011 Appl. Phys. Lett. 98 083107
Mazo-Zuluaga J, Restrepo J and Mejia-Lopez J 2008 J. Phys.: Condens. Matter 20 195213
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.