[en] Watershed management and hydrological modeling require data related to the very important matter of precipitation, often measured using raingages or weather stations. Hydrological models often require a preliminary spatial interpolation as part of the modeling process. The success of spatial interpolation varies according to the type of model chosen, its mode of geographical management and the resolution used. The quality of a result is determined by the quality of the continuous spatial rainfall which ensues from the interpolation method used. The objective of this article is to review the existing methods for interpolation of rainfall data that are usually required in hydrological modeling. We review the basis for the application of certain common methods and geostatistical approaches used in interpolation of rainfall. Previous studies have highlighted the need for new research to investigate ways of improving the quality of rainfall data and ultimately, the quality of hydrological modeling.
Research Center/Unit :
Univ. of Liège, Gembloux Agro-Bio Tech, Soil-Water Systems Institute of Technology of Cambodia, Department of Rural Engineering
Charles, Catherine ; Université de Liège - ULiège > Sciences agronomiques > Statistique, Inform. et Mathém. appliquée à la bioingénierie
Degré, Aurore ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Language :
English
Title :
Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review
Alternative titles :
[en] Méthodes de spatialisation de données pluviométriques dédiées à l’hydrologie opérationnelle et à la modélisation hydrologique à l’échelle du bassin versant : une revue bibliographique
Publication date :
2013
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Volume :
17
Issue :
2
Pages :
392-406
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
CUD - Commission Universitaire pour le Développement
Abtew W., Obeysekera J. & Shih G., 1993. Spatial analysis for monthly rainfall in South Florida. J. Am. Water Resour. Assoc., 29(2), 179-188.
Basistha A., Arya D.S. & Goel N.K., 2008. Spatial distribution of rainfall in Indian Himalayas-a case study of Uttarakhand region. Water Resour. Manage., 22(10), 1325-1346.
Beek E.G., Stein A. & Janssen L.L.F., 1992. Spatial variability and interpolation of daily precipitation amount. Stochastic Hydrol. Hydraul., 6(4), 304-320.
Bell V.A. & Moore R.J., 2000. The sensitivity of catchment runoff models to rainfall data at different spatial scales. Hydrol. Earth Syst. Sci., 4(4), 653-667.
Borga M. & Vizzaccaro A., 1997. On the interpolation of hydrologic variables: formal equivalence of multiquadratic surface fitting and kriging. J. Hydrol., 195(1-4), 160-171.
Buytaert W. et al., 2006. Spatial and temporal rainfall variability in mountainous areas: a case study from the South Ecuadorian Andes. J. Hydrol., 329(3-4), 413-421.
Carrera-Hernandez J.J. & Gaskin S.J., 2007. Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J. Hydrol., 336(3-4), 231-249.
Chaubey I., Haan C.T., Grunwald S. & Salisbury J.M., 1999. Uncertainty in the model parameters due to spatial variability of rainfall. J. Hydrol., 220(1-2), 48-61.
Chilès J.P. & Delfiner P., 1999. Geostatistics: modelling spatial uncertainty. 1sted. New York, USA: Wiley-Interscience.
Chow V.T., 1964. Handbook of applied hydrology: a compendium of water-resources technology. 1sted. New York, USA: McGraw-Hill, Inc.
Chow V.T., Maidment D.R. & Mays L.W., 1988. Applied hydrology. International ed. Singapore: McGraw-Hill, Inc.
Cressie N., 1991. Statistics for spatial data. 1sted. New York, USA: Wiley.
Creutin J.D., Delrieu G. & Lebel T., 1988. Rain measurement by raingage-radar combination: a geostatistical approach. J. Atmos. Oceanic Technol., 5(1), 102-115.
Deutsch C.V., 1996. Correcting for negative weights in ordinary kriging. Comput. Geosci.-Uk, 22(7), 765-773.
Diodato N., 2005. The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int. J. Climatol., 25(3), 351-363.
Dirks K.N., Hay J.E., Stow C.D. & Harris D., 1998. High-resolution studies of rainfall on Norfolk Island. Part 2: Interpolation of rainfall data. J. Hydrol., 208(3-4), 187-193.
Goovaerts P., 1997. Geostatistics for natural resources evaluation. New York, USA: Oxford University Press.
Goovaerts P., 1999. Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34(3-4), 227-242.
Goovaerts P., 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228(1-2), 113-129.
Groisman P.Y. & Legates D.R., 1994. The accuracy of United States precipitation data. Bull. Am. Meteorol. Soc., 75(2), 215-227.
Haberlandt U., 2007. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol., 332(1-2), 144-157.
Haberlandt U. & Kite G.W., 1998. Estimation of daily space-time precipitation series for macroscale hydrological modelling. Hydrol. Process, 12(9), 1419-1432.
Hengl T., Geuvelink G.B.M. & Stein A., 2003. Comparison of kriging with external drift and regression kriging. Enschede, The Netherlands: ITC.
Isaaks E.H. & Srivastava R.M., 1990. An introduction to applied geostatistics. New York, USA: Oxford University Press.
Johnson G.L. & Hanson C.L., 1995. Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J. Appl. Meteorol., 34(1), 68-87.
Kyriakidis P.C., Kim J. & Miller N.L., 2001. Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteorol., 40(11), 1855-1877.
Lanza L.G., Ramirez J.A. & Todini E., 2001. Stochastic rainfall interpolation and downscaling. Hydrol. Earth Syst. Sci., 5(2), 139-143.
Lloyd C.D., 2005. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol., 308(1-4), 128-150.
Looper J.P. & Vieux B.E., 2011. An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. J. Hydrol., 412-413, 114-132.
Mandapaka P.V., Krajewski W.F., Mantilla R. & Gupta V.K., 2009. Dissecting the effect of rainfall variability on the statistical structure of peak flows. Adv. Water Resour., 32(10), 1508-1525.
Masih I., Maskey S., Uhlenbrook S. & Smakhtin V., 2011. Assessing the impact of areal precipitation input on streamflow simulations using the SWAT model. J. Am. Water Resour. Assoc., 47(1), 179-195.
Matheron G., 1971. The theory of regionalized variables and its applications. Paris: École Nationale Supérieure des Mines de Paris.
Moral F.J., 2010. Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int. J. Climatol., 30(4), 620-631.
Nalder I.A. & Wein R.W., 1998. Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric. For. Meteorol., 92(4), 211-225.
Nicotina L., Celegon E.A., Rinaldo A. & Marani M., 2008. On the impact of rainfall patterns on the hydrologic response. Water Resour. Res., 44(12).
Obled C., Wendling J. & Beven K., 1994. The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data. J. Hydrol., 159(1-4), 305-333.
Phillips D.L., Dolph J. & Marks D., 1992. A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. For. Meteorol., 58(1-2), 119-141.
Refsgaard J.C., 1996. Terminology, modelling protocol and classification of hydrological model codes. In: Abbott M.B. & Refsgaard J.C., eds. Distributed hydrological modelling. Dordrecht, The Netherlands: Kluwer Academic Publishers, 17-39.
Ruelland D., Ardoin-Bardin S., Billen G. & Servat E., 2008. Sensitivity of a lumped and semi-distributed hydrological model to several methods of rainfall interpolation on a large basin in West Africa. J. Hydrol., 361(1-2), 96-117.
Schiemann R. et al., 2011. Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland. Hydrol. Earth Syst. Sci., 15(5), 1515-1536.
Schuurmans J.M. & Bierkens M.F.P., 2007a. Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrol. Earth Syst. Sci., 11(2), 677-693.
Schuurmans J.M., Bierkens M.F.P., Pebesma E.J. & Uijlenhoet R., 2007b. Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar. J. Hydrometeorol., 8(6), 1204-1224.
Segond M.L., Wheater H.S. & Onof C., 2007. The significance of spatial rainfall representation for flood runoff estimation: a numerical evaluation based on the Lee catchment, UK. J. Hydrol., 347(1-2), 116-131.
Sevruk B., 1997. Regional dependency of precipitation-altitude relationship in the Swiss Alps. Clim. Change, 36(3-4), 355-369.
Shah S.M.S., O'Connell P.E. & Hosking J.R.M., 1996a. Modelling the effects of spatial variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic rainfall field model. J. Hydrol., 175(1-4), 67-88.
Shah S.M.S., O'Connell P.E. & Hosking J.R.M., 1996b. Modelling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models. J. Hydrol., 175(1-4), 89-111.
Sinclair M.R., Wratt D.S., Henderson R.D. & Gray W.R., 1997. Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand-a case study. J. Appl. Meteorol., 36(5), 428-442.
Singh V.P., 1995. Watershed modeling. In: Singh V.P., ed. Computer models of watershed hydrology. Colorado, USA: Water Resources Publications, 1-22.
Singh V.P., 1997. Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrol. Process, 11(12), 1649-1669.
Syed K., Goodrich D., Myers D. & Sorooshian S., 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J. Hydrol., 271(1-4), 1-21.
Tabios G.Q. & Salas J.D., 1985. A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull., 21, 265-380.
Tobin C. et al., 2011. Improved interpolation of meteorological forcings for hydrologic applications in a Swiss alpine region. J. Hydrol., 401(1-2), 77-89.
Van De Beek C.Z., Leijnse H., Torfs P.J.J.F. & Uijlenhoet R., 2011. Climatology of daily rainfall semi-variance in The Netherlands. Hydrol. Earth Syst. Sci., 15(1), 171-183.
Velasco-Forero C.A., Sempere-Torres D., Cassiraga E.F. & Gomez-Hernandez J.J., 2009. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv. Water Resour., 32(7), 986-1002.
Verworn A. & Haberlandt U., 2011. Spatial interpolation of hourly rainfall-effect of additional information, variogram inference and storm properties. Hydrol. Earth Syst. Sci., 15(2), 569-584.
Webster R. & Oliver M.A., 2007. Geostatistics for environmental scientists. 2nded. Chichester, UK: John Wiley & Sons.
Zimmerman D., Pavlik C., Ruggles A. & Armstrong M., 1999. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol., 31(4), 375-390.