Article (Scientific journals)
Reinforcement learning versus model predictive control: a comparison on a power system problem
Ernst, Damien; Glavic, Mevludin; Capitanescu, Florin et al.
2009In IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics, 33 (2), p. 517-519
Peer Reviewed verified by ORBi
 

Files


Full Text
ernst-SMC.pdf
Publisher postprint (1.07 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
approximate dynamic programming; electric power oscillations damping; fitted Q iteration; interior point method; model predictive control; reinforcement learning; tree-based supervised learning
Abstract :
[en] This paper compares reinforcement learning (RL) with model predictive control (MPC) in a unified framework and reports experimental results of their application to the synthesis of a controller for a nonlinear and deterministic electrical power oscillations damping problem. Both families of methods are based on the formulation of the control problem as a discrete-time optimal control problem. The considered MPC approach exploits an analytical model of the system dynamics and cost function and computes open-loop policies by applying an interior-point solver to a minimization problem in which the system dynamics are represented by equality constraints. The considered RL approach infers in a model-free way closed-loop policies from a set of system trajectories and instantaneous cost values by solving a sequence of batch-mode supervised learning problems. The results obtained provide insight into the pros and cons of the two approaches and show that RL may certainly be competitive with MPC even in contexts where a good deterministic system model is available.
Disciplines :
Electrical & electronics engineering
Computer science
Author, co-author :
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Glavic, Mevludin 
Capitanescu, Florin ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Reinforcement learning versus model predictive control: a comparison on a power system problem
Publication date :
2009
Journal title :
IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics
ISSN :
1083-4419
eISSN :
1941-0492
Publisher :
IEEE
Volume :
33
Issue :
2
Pages :
517-519
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 02 June 2009

Statistics


Number of views
357 (25 by ULiège)
Number of downloads
3474 (17 by ULiège)

Scopus citations®
 
175
Scopus citations®
without self-citations
159
OpenCitations
 
115
OpenAlex citations
 
212

Bibliography


Similar publications



Contact ORBi