Calorimetry; Circular Dichroism; DNA/chemistry; Drug Discovery; Fluorescence Resonance Energy Transfer; G-Quadruplexes; Humans; Ligands; Magnetic Resonance Spectroscopy; Spectrometry, Fluorescence; Spectrometry, Mass, Electrospray Ionization; review
Abstract :
[en] Nowadays, the molecular basis of interaction between low molecular weight compounds and biological macromolecules is the subject of numerous investigations aimed at the rational design of molecules with specific therapeutic applications. In the last decades, it has been demonstrated that DNA quadruplexes play a critical role in several biological processes both at telomeric and gene promoting levels thus providing a great stride in the discovery of ligands able to interact with such a biologically relevant DNA conformation. So far, a number of experimental and computational approaches have been successfully employed in order to identify new ligands and to characterize their binding to the DNA. The main focus of this review is the description of these methodologies, placing a particular emphasis on computational methods, isothermal titration calorimetry (ITC), mass spectrometry (MS), nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence spectroscopies.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Neidle S. Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 2010; 277: 1118-25.
Brooks TA, Kendrick S, Hurley L. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 2010; 277: 3459-69.
Wu Y, Brosh RMJ. G-quadruplex nucleic acids and human disease. FEBS J 2010; 277: 3470-88.
Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 2011; 10: 261-75.
Pagano B, Giancola C. Energetics of quadruplex-drug recognition in anticancer therapy. Curr Cancer Drug Targets 2007; 7: 520-40.
Phan AT. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J 2010; 277: 1107-17.
Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 2001; 98: 8572-7.
Dexheimer TS, Carey SS, Zuohe S, et al. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III1. Mol Cancer Ther 2009; 8: 1363-77.
Gonzalez V, Guo K, Hurley LH, Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem 2009; 284: 23622-23635.
Shay J, Wright W. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 2006; 5: 577-84.
Blackburn EH. Telomerases. Annu Rev Biochem 1992; 61: 113-129.
Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011-2015.
De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL. Targeting telomeres and telomerase. Bio-chimie 2008; 90: 131-155.
Zahler AM, Williamson JR, Cech TR, Prescott DM. Inhibition of telomerase by G-quartet DNA structures. Nature 1991; 350: 718-720.
de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19: 2100-2110.
Zaug AJ, Podell ER, Cech TR. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci USA 2005; 102: 10864-10869.
Colgin LM, Baran K, Baumann P, Cech TR, Reddel RR. Human POT1 facilitates telomere elongation by telomerase. Curr Biol 2003; 13: 942-6.
Wang H, Nora GJ, Ghodke H, Opresko PL. J Biol Chem 2011; 286: 7479-7489.
Gomez D, O'Donohue MF, Wenner T, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 2006; 66: 6908-6912.
Gomez D, Wenner T, Brassart B, et al. Telomestatin-induced te-lomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells. J Biol Chem 2006; 281: 38721-38729.
Gunaratnam M, Greciano O, Martins C, et al. Mechanism of acridine-based telomerase inhibition and telomere shortening. Bio-chem Pharmacol 2007; 74: 679-689.
Soldatenkov VA, Vetcher AA, Duka T, Ladame S. First evidence of a functional interaction between DNA quadruplexes and poly(ADP-ribose) polymerase-1. ACS Chemical Biology 2008; 3: 214-219.
Wang Q, Liu JQ, Chen Z, et al. G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polym-erase and unwinding by helicase. Nucleic Acids Res 2011; doi:10.1093/nar/gkr164.
Sun D, Thompson B, Cathers BE, et al. Inhibition of human telom-erase by a G-quadruplex-interactive compound. J Med Chem 1997; 40: 2113-16.
Monchaud D, Granzhan A, Saettel N, Guédin A, Mergny JL, Teu-lade-Fichou MP. One ring to bind them all-part I: the efficiency of the macrocyclic scaffold for g-quadruplex DNA recognition. J Nucleic Acids 2010; 2010: pii: 525862.
Burger AM, Dai F, Schultes CM, Reszka AP, Moore MJ, Double JA, Neidle S. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 2005; 65: 1489-96.
Salvati E, Leonetti C, Rizzo A, et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007; 117: 3236-47.
Leonetti C, Scarsella M, Riggio G, et al. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in pre-clinical models of solid tumors. Clin Cancer Res 2008; 14: 7284-91.
Tauchi T, Shin-Ya K, Sashida G, et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: In vitro and in vivo studies in acute leukemia. Oncogene 2006; 25: 5719-25.
Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 2002; 124: 2098-99.
Drygin D, Siddiqui-Jain A, O'Brien S, et al. Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res 2009; 69: 7653-61.
Duan W, Rangan A, Vankayalapati H, et al. Design and synthesis of fluoroquinophenoxazines that interact with human telomeric G-quadruplexes and their biological effects. Mol Cancer Ther 2001; 1: 103-20.
Brooks TA, Hurley LH. Targeting MYC expression through G-quadruplexes. Genes Cancer 2010; 1: 641-9.
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Rev Drug Discov 2004; 3: 935-49.
Kolb P, Fer-reira RS, Irwin JJ, Shoichet BK. Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 2009; 20: 429-36.
Kolb P, Irwin JJ. Docking screens: right for the right reasons? Curr Top Med Chem 2009; 9: 755-70.
Koppen H. Virtual screening-what does it give us? Curr Opin Drug Discov Devel 2009; 12: 397-407.
Rester U. From virtuality to reality-Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 2008; 11: 559-68.
McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007; 11: 494-502.
Seifert MH, Kraus J, Kramer B. Virtual high-throughput screening of molecular databases. Curr Opin Drug Discov Devel 2007; 10: 298-307.
Shoichet BK. Virtual screening of chemical libraries. Nature 2004; 432: 862-5.
Berman HM. The protein data bank and the challenge of structural genomics. Nat Struct Biol 2000; 7: 957-9.
Westbrook J, Feng Z, Chen L, Yang H, Berman HM. The protein data bank and structural genomics. Nucleic Acids Res 2003; 31: 489-91.
AM Wassermann, Bajorath J. BindingDB and ChEMBL: online compound databases for drug discovery. Expert Opin Drug Discov. 2011; 6: 683-7.
Sponer J, Spacková N. Molecular dynamics simulations and their application to four-stranded DNA. Methods 2007; 43: 278-90
Yang L, Tan CH, Hsieh MJ, et al. New-generation amber united-atom force field. J Phys Chem B 2006; 110: 13166-13176.
Foloppe N, MacKerell AD. All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 2000; 21: 86-104
Evans DA, Neidle S. Virtual screening of DNA minor groove binders. J Med Chem 2006; 49: 4232-8
Holt PA, Chaires JB, Trent JO. Molecular docking of intercalators and groove-binders to nucleic acids using autodock and surflex. J Chem Inf Model 2008; 48: 1602-15.
Ma DL, Lai TS, Chan FY, et al. Discovery of a drug-like G-quadruplex binding ligand by high-throughput docking. ChemMedChem 2008; 3: 881-4.
Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002; 417: 876-80
J. J. Irwin, B. K. Shoichet. ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005; 45: 177-82.
Totrov M, Abagyan R. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl. 1997; 29: 215-20.
Schultes CM, Guyen B, Cuesta J, Neidle S. Synthesis, biophysical and biological evaluation of 3,6-bis-amidoacridines with extended 9-anilino substituents as potent G-quadruplex-binding telomerase inhibitors. Bioorg Med Chem Lett 2004; 14: 4347-51.
Ou TM, Lu YJ, Tan JH, Huang ZS, Wong KY, Gu LQ. G-quadruplexes: targets in anticancer drug design. ChemMedChem 2008; 3: 690-713.
Lee HM, Chan DSH, Yang F, et al. Identification of natural product fonsecin B as a stabilizing ligand of c-myc G-quadruplex DNA by high-throughput virtual screening. Chem. Commun 2010; 46: 4680-2.
Chan DS, Yang H, Kwan MH, et al. Structure-based optimization of FDA-approved drug methylene blue as a c-myc G-quadruplex DNA stabilizer. Biochimie 2011; 93: 1055-64.
Sun H, Xiang J, Zhang Y, Xu G, Xu L, Tang Y. Spectroscopic studies of the interaction between methylene blue and G-quadruplex. Chin Sci Bull 2006; 51: 1687-92.
Cosconati S, Marinelli L, Trotta R, et al. Tandem application of virtual screening and NMR experiments in the discovery of brand new DNA quadruplex groove binders. J Am Chem Soc 2009; 131: 16336-7.
Caceres C, Wright G, Gouyette C, Parkinson G, Subirana JA. A thymine tetrad in d(TGGGGT) quadruplexes stabilized with Tl+/Na+ ions. Nucleic Acids Res 2004; 32: 1097-1102.
Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007; 28: 1145-52.
Dailey MM, Hait C, Holt PA, et al. Structure-based drug design: from nucleic acid to membrane protein targets. Exp Mol Pathol 2009; 86: 141-50.
Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual Screening with AutoDock: Theory and Practice. Expert Opin Drug Discov. 2010; 5: 597-607.
Cosconati S, Marinelli L, La Motta C, et al. Pursuing aldose reductase inhibitors through in situ cross-docking and similarity-based virtual screening. J Med Chem. 2009; 52: 5578-5581.
Cosconati S, Hong JA, Novellino E, Carroll KS, Goodsell DS, Olson AJ. Structure-based virtual screening and biological evaluation of Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase inhibitors. J Med Chem. 2008; 51: 6627-30.
Johnson MA, Maggiora GM. Concepts and Applications of Molecular Similarity. New York, USA: John Wiley & Sons 1990.
Li Q, Xiang J, Li X, et al. Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves. Biochimie 2009; 91: 811-9.
Qiao X, Hou T, Zhang W, Guo S, Xu X. A 3D structure database of components from Chinese traditional medicinal herbs. J Chem Inf Comput Sci 2002; 42: 481-9.
Chen SB, Tan JH, Ou TM, H et al. Pharmacophore-based discovery of triaryl-substituted imidazole as new telomeric G-quadruplex ligand. Bioorg Med Chem Lett 2011; 21: 1004-9.
Doyle ML. Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol 1997; 8: 31-5.
Pagano B, Mattia CA, Giancola C. Applications of isothermal titration calorimetry in biophysical studies of G-quadruplexes. Int J Mol Sci 2009; 10: 2935-57.
Martino L, Pagano B, Fotticchia I, Neidle S, Giancola C. Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes. J Phys Chem B 2009; 113: 14779-86.
Peng D, Tan JH, Chen SB, Ou TM, Gu LQ, Huang ZS. Bis-aryldiketene derivatives: A new class of selective ligands for c-myc G-quadruplex DNA. Bioorg Med Chem 2010; 18: 8235-42.
Bhadra K, Kumar GS. Interaction of berberine, palmatine, cora-lyne, and sanguinarine to quadruplex DNA: a comparative spectro-scopic and calorimetric study. Biochim Biophys Acta 2011; 1810: 485-96.
Chaires JB. Calorimetry and thermodynamics in drug design. Annu Rev Biophys 2008; 37: 135-51.
Freire E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 2008; 13: 869-74.
Pagano B, Mattia CA, Virno A, Randazzo A, Mayol L, Giancola C. Thermodynamic analysis of quadruplex DNA-drug interaction. Nucleosides Nucleotides Nucleic Acids 2007; 26: 761-5.
Martino L, Virno A, Pagano B, et al. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadru-plex structure [d(TGGGGT)]4. J Am Chem Soc 2007; 129: 16048-56.
Pagano B, Virno A, Mattia CA, Mayol L, Randazzo A, Giancola C. Targeting DNA quadruplexes with distamycin A and its derivatives: an ITC and NMR study. Biochimie 2008; 90: 1224-32.
Cosconati S, Marinelli L, Trotta R, et al. Structural and conforma-tional requisites in DNA quadruplex groove binding: another piece to the puzzle. J Am Chem Soc 2010; 132: 6425-33.
Pagano B, Fotticchia I, De Tito S, et al. Selective Binding of Dis-tamycin A Derivative to G-Quadruplex Structure [d(TGGGGT)]4. J Nucleic Acids 2010; 2010: pii: 247137.
Cocco MJ, Hanakahi LA, Huber MD, Maizels N. Specific interactions of distamycin with G-quadruplex DNA. Nucl Acids Res 2003; 31: 2944-51.
Moore MJ, Cuenca F, Searcey M, Neidle S. Synthesis of distamycin A polyamides targeting G-quadruplex DNA. Org Biomol Chem 2006; 4: 3479-88.
Zaffaroni N, Lualdi S, Villa R, et al. Inhibition of telomerase activity by a distamycin derivative: effects on cell proliferation and induction of apoptosis in human cancer cells. Eur J Cancer 2002; 38: 1792-801.
Pilch DS, Barbieri CM, Rzuczek SG, Lavoie EJ, Rice JE. Targeting human telomeric G-quadruplex DNA with oxazole-containing mac-rocyclic compounds. Biochimie 2008; 90: 1233-49.
Cummaro A, Fotticchia I, Franceschin M, Giancola C, Petraccone L. Binding properties of human telomeric quadruplex multimers: A new route for drug design. Biochimie 2011; 93: 1392-400.
Arora A, Maiti S. Effect of loop orientation on quadruplex-TMPyP4 interaction. J Phys Chem B 2008; 112: 8151-9.
Trotta R, De Tito S, Lauri I, et al. A more detailed picture of the interactions between virtual screening-derived hits and the DNA G-quadruplex: NMR, molecular modelling and ITC studies. Bio-chimie 2011; 93: 1280-7.
Beck JL, Colgrave ML, Ralph SF, Sheil MM. Electrospray ioniza-tion mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins Mass Spectrom Rev 2001; 20: 61-87.
Hofstadler SA, Griffey RH. Analysis of noncovalent complexes of DNA and RNA by mass spectrometry Chem Rev 2001; 101: 377-90.
Rosu F, De Pauw E, Gabelica V. Electrospray mass spectrometry to study drug-nucleic acid interactions Biochimie 2008; 90: 1074-87.
Brodbelt JS. Evaluation of DNA/Ligand interactions by electros-pray ionization mass spectrometry. Annu Rev Anal Chem 2010; 3: 67-87.
Gabelica V. In: Banoub JH, Limbach PA, Eds.; Mass Spectrometry of Nucleosides and Nucleic Acids; CRC Press. 2010; pp 283-302.
Yuan G, Zhang Q, Zhou J, Li H. Mass spectrometry of G-quadruplex DNA: Formation, recognition, property, conversion, and conformation Mass Spectrom Rev 2011;10.1002/mas.20315 [doi].
Baker ES, Bernstein SL, Gabelica V, De Pauw E, Bowers MT. G-quadruplexes in telomeric repeats are conserved in a solvent-free environment. Int J Mass Spectrom 2006; 253: 225-37.
Smargiasso N, Rosu F, Hsia W, et al. G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation. J Am Chem Soc 2008; 130: 10208-16.
Gabelica V. Determination of equilibrium association constants of ligand-DNA complexes by electrospray mass spectrometry. Methods Mol Biol 2010; 613: 89-101.
Collie GW, Parkinson GN, Neidle S, Rosu F, De Pauw E, Gabelica V. Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. J Am Chem Soc 2010; 132: 9328-34.
Amato J, Oliviero G, De Pauw E, Gabelica V. Hybridization of short complementary PNAs to G-quadruplex forming oligonucleo-tides: An electrospray mass spectrometry study. Biopolymers 2009; 91: 244-55.
Li H, Liu Y, Lin S, Yuan G. Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene. Chem Eur J 2009; 15: 2445-52.
Lombardo CM, Martinez IS, Haider S, Gabelica V, De Pauw E, Moses JE, Neidle S. Structure-based design of selective high-affinity telomeric quadruplex-binding ligands. Chem Commun 2010; 46: 9116-8.
Carrasco C, Rosu F, Gabelica V, et al. Tight binding of the antitumor drug ditercalinium to quadruplex DNA Chembiochem 2002; 3: 1235-41.
Rosu F, De Pauw E, Guittat L, et al. Selective interaction of ethid-ium derivatives with quadruplexes: an equilibrium dialysis and electrospray ionization mass spectrometry analysis Biochemistry 2003; 42: 10361-71.
Guittat L, De CA, Rosu F, et al. Ascididemin and meridine stabilise G-quadruplexes and inhibit telomerase in vitro Biochim Bio-phys Acta 2005; 1724: 375-84.
Casagrande V, Alvino A, Bianco A, Ortaggi G, Franceschin M. Study of binding affinity and selectivity of perylene and coronene derivatives towards duplex and quadruplex DNA by ESI-MS J Mass Spectrom 2009; 44: 530-40.
Gabelica V, Rosu F, De Pauw E. A Simple Method to Determine Electrospray Response Factors of Noncovalent Complexes. Anal Chem 2009; 81: 6708-15.
Rosu F, Gabelica V, Smargiasso N, Mazzucchelli G, Shin-ya K, De Pauw E. Cation involvement in telomestatin binding to g-quadruplex DNA J Nucleic Acids 2010; 2010.
Linder J, Garner TP, Williams HE, Searle MS, Moody CJ. Telomestatin: formal total synthesis and cation-mediated interaction of its seco-derivatives with G-quadruplexes J Am Chem Soc 2011; 133: 1044-51.
David WM, Brodbelt J, Kerwin SM, Thomas PW. Investigation of quadruplex oligonucleotide-drug interactions by electrospray ioni-zation mass spectrometry Anal Chem 2002; 74: 2029-33.
Mazzitelli CL, Brodbelt JS, Kern JT, Rodriguez M, Kerwin SM. Evaluation of binding of perylene diimide and benzannulated perylene diimide ligands to DNA by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2006; 17: 593-604.
Rosu F, Pirotte S, De Pauw E, Gabelica V. Positive and negative ion mode ESI-MS and MS/MS for studying drug-DNA complexes. Int J Mass Spectrom 2006; 253: 156-71.
Baker ES, Lee JT, Sessler JL, Bowers MT. Cyclo[n]pyrroles: size and site-specific binding to G-quadruplexes. J Am Chem Soc 2006; 128: 2641-8.
Gabelica V, Baker ES, Teulade-Fichou M-P, De Pauw E, Bowers MT. Stabilization and structure of telomeric and c-myc region intramolecular G-quadruplexes: The role of central cations and small planar ligands. J Am Chem Soc 2007; 129: 895-904.
Fielding L. NMR methods for the determination of protein-ligand dissociation constants. Curr Top Med Chem 2003; 3: 39-53.
Peng JW, Moore J., Abdul-Manan N. NMR experiments for lead generation in drug discovery. Prog NMR Spectrosc 2004; 44: 225-56.
Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 2003; 42: 864-890.
Stockman BJ, Dalvit C. NMR screening techniques in drug discovery and drug design. Prog NMR Spectrosc 2002; 41: 187-231.
Randazzo A, Galeone A, Mayol L. 1H-NMR Study of the Interaction of Distamycin A and Netropsin with the Parallel Stranded Tetraplex [d(TGGGGT)]4. Chem Comm 2001; 11: 1030-1.
Randazzo A, Galeone A, Esposito V, Varra M, Mayol L. Interaction of Distamycin A and Netropsin with Quadruplex and Duplex Structures: a Comparative 1H-NMR Study. Nucleoside Nucleotides Nucleic Acids 2002; 21: 535-545.
Bodenhausen G, Ruben J. Natural Abundance Nitrogen-15 NMR by Enhanced Heteronuclear Spectroscopy. Chem Phys Lett 1980; 69: 185-9.
Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996; 274: 1531-4.
A. Medek, P. J. Hajduk, J. Mack and S. W. Fesik, J. Am. Chem. Soc., 2000, 122, 1241-1242.
Di Micco S, Bassarello C, Bifulco G, Riccio R, Gomez-Paloma L. Differential-Frequency Saturation Transfer Difference NMR Spectroscopy Allows the Detection of Different Ligand-DNA Binding Modes. Angew Chem Int Ed 2005; 45: 224-8.
Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 1999; 38: 1784-8.
Mayer M, Meyer B. Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor. J Am Chem Soc 2001; 123: 6108-6117.
Otting G, Liepinsh E, Farmer BT, Wüthrich K. Protein hydration studied with homonuclear 3D 1H NMR experiments. J Biomol NMR 1991; 1: 209-215.
Otting G, Liepinsh E, Wüthrich K. Protein hydration in aqueous solution. Science 1991; 254: 974-980.
Otting G, NMR studies of water bound to biological molecules. Prog Nucl Magn Reson Spectrosc 1997; 31: 259-285.
Dalvit C, Cottens S, Ramage P, Hommel U. Half-filter experiments for assignment, structure determination and hydration analysis of unlabelled ligands bound to 13C/15N labelled proteins. J Biomol NMR 1999; 13: 43-50.
Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti M, Sundstrom M. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 2000; 18: 65-68.
Balaram P, Bothner-By AA, Breslow E. Localization of tyrosine at the binding site of neurophysin II by negative nuclear Overhauser effects. J Am Chem Soc 1972; 94: 4017-8.
Balaram P, Bothner-By AA, Dadok J. Negative nuclear Overhauser effects as probes of macromolecular structure. J Am Chem Soc 1972; 94: 4015-7.
Albrand JP, Birdsall B, Feeney J, Roberts GCK, Burgen ASV. The use of transferred nuclear Overhauser effects in the study of the conformation of small molecules bound to proteins. Int J Biol Mac-romol 1979; 1: 37-41.
Clore GM, Gronenborn A. Theory of the time dependent transferred nuclear Overhauser effect: application to the structural analysis of ligand-protein complexes in solution. J Magn Reson 1983; 53: 423-442.
Feeney J, Birdsall B, Roberts GC, Burgen AS, Use of transferred nuclear Overhauser effect measurements to compare binding of co-enzyme analogs to dihydrofolate reductase. Biochemistry 1983; 22: 628-633.
Krishna NR, Moseley HNB. In: Structural Computation and Dynamics in Protein NMR, New York, Kluwer Academic, 1999, pp. 223-307.
London RE, Theoretical analysis of the inter-ligand Overhauser effect: a new approach for mapping structural relationships of mac-romolecular ligands. J Magn Reson 1999; 141: 301-311.
Jimenez-Barbero J, Asensio JL, Canada FJ, Poveda A. Free and protein bound carbohydrate structures. Curr Opin Struct Biol 1999; 9: 549-555.
Peters T, Pinto BM. Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr Opin Struct Biol 1996; 6: 710-720.
Ni F, Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectrosc 1994; 26: 517-606.
Li D, Levy LA, Gabel SA, et al. Interligand overhauser effects in Type II dihydrofolate reductase. Biochemistry 2001; 40: 4242-4252.
H. N. Moseley, W. Lee, C. H. Arrowsmith, N. R. Krishna, Biochemistry 1997; 36: 5293-9.
Yan JL, Kline AD, Mo HP, Zartler ER, Shapiro MJ. Epitope mapping of ligand-receptor interactions by diffusion NMR. J Am Chem Soc 2002; 124: 9984-5;
Torsten B, Cabrita EJ, Berger S Intermolecular interaction as investigated by NOE and diffusion studies. Prog Nucl Mag Res 2005; 46: 159-196.
Zhou Q, Li L, Xiang J, Tang Y, Zhang H, Yang S, Li Q, Yang Q, Xu G. Screening Potential Antitumor Agents from Natural Plant Extracts by G-Quadruplex Recognition and NMR Methods. Angew Chem Int Ed 2008; 47: 5590-2.
Johnson CS. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Mag Res 1999; 34: 203-256.
Morris KF, Johnson CS. Diffusion-ordered 2-dimensional nuclear-magnetic-resonance spectroscopy. J Am Chem Soc 1992; 114: 3139-3141.
Crabbe P. Optical rotatory dispersion and circular dichroism in organic chemistry, Holden-Day, San Francisco, 1965.
Berova N, Di Bari L, Pescitelli G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 2007; 36: 914-931.
Circular dichroism and the conformational analysis of bio-molecules, ed. G. D. Fasman, Plenum, New York, 1996.
Masiero S, Trotta R, Pieraccini S, et al. A non-empirical chromo-phoric interpretation of CD spectra of DNAG-quadruplex structures. Org Biomol Chem 2010; 8: 2683-2692
Rodriguez R, Pantos GD, Gonçalves DP, Sanders JK, Balasubra-manian S. Ligand-Driven G-Quadruplex Conformational Switching By Using an Unusual Mode of Interaction. Angew Chem 2007; 46(28): 5405-7.
Cogoi S, Xodo LE. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res 2006; 34: 2536-2549.
Gray RD, Chaires JB. Analysis of Multidimensional G-Quadruplex Melting Curves. Curr Protoc in Nucleic Acid Chemistry 2011; 45: 17.4.1-17.4.16.
Li W, Wu P, Ohmichi T, Sugimoto N. Characterization and thermodynamic properties of quadruplex/duplex competition. FEBS Lett 2002; 526: 77-81.
Li J, Correia JJ, Wang L, Trent JO, Chaires JB. Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 2005; 33: 4649-4659.
Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V. Hairpin and parallel quartet structures for te-lomeric sequences. Nucleic Acids Res 1992; 20: 4061-4067.
Jin R, Gaffney BL, Wang C, Jones RA, Breslauer J. Thermodynamics and structure of a DNA tetraplex: A spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci U. S. A. 1992; 89: 8832-8836.
Lu M, Guo Q, Kallenbach NR Thermodynamics of G-tetraplex formation by telomeric DNAs. Biochemistry 1993; 32: 598-601.
Wang L, Wen Y, Liu J, Zhou J, Li C, Wei C. Promoting the formation and stabilization of human telomeric G-quadruplex DNA, inhibition of telomerase and cytotoxicity by phenanthroline derivatives. Org Biomol Chem 2011; 9: 2648-2653
Sun H, Tang Y, Xiang J, Xu G, Zhang YZH, Xua L. Spectroscopic studies of the interaction between quercetin and G-quadruplex DNA. Bioorganic & medicinal chemistry letters 2006; 16(13): 3586-9
Dash J, Shirude PS, Hsu STD, Balasubramanian S. Diarylethynyl Amides That Recognize the Parallel Conformation of Genomic Promoter DNA G-Quadruplexes. J Am Chem Soc 2008; 130(47): 15950-6.
Hudson JS, Brooks SC, Graves DE. Interactions of Actinomycin D with Human Telomeric G-Quadruplex DNA Biochemistry 2009; 48(21): 4440-4447.
Chang CC, Chien CW, Lin YH, Kang CC, Chang TC. Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule. Nucleic Acids Res 2007; 35: 2846-60.
Petraccone L, Fotticchia I, Cummaro A, et al. The triazatruxene derivative azatrux binds to the parallel form of the human telomeric G-quadruplex under molecular crowding conditions: Biophysical and molecular modeling studies. Biochimie 2011; 93: 1318-27.
Lubitz I, Borovok N, Kotlyar A. Interaction of monomolecular G4-DNA nanowires with TMPyP: evidence for intercalation. Biochemistry 2007; 46: 12925-9.
Kong DM, Ma YE, Wu J, Shen HX. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry 2009; 15: 901-9.
Jia G, Feng Z, Wei C, Zhou J, Wang X, Li C. Dynamic insight into the interaction between porphyrin and G-quadruplex DNAs: time-resolved fluorescence anisotropy study. J Phys Chem B 2009; 113: 16237-45.
Barbieri CM, Srinivasan AR, Rzuczek SG, Rice JE, LaVoie EJ, Pilch DS. Defining the mode, energetics and specificity with which a macrocyclic hexaoxazole binds to human telomeric G-quadruplex DNA. Nucleic Acids Res 2007; 35: 3272-86.
Monchaud D, Allain C, Teulade-Fichou MP. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg Med Chem Lett 2006; 16: 4842-5.
Mergny JL, Maurizot JC. Fluorescence resonance energy transfer as a probe for G-quartet formation by a telomeric repeat. Chembio-chem 2001; 2: 124-32.
De Cian A, Guittat L, Kaiser M, et al. Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007; 42: 183-95.
Gray RD, Petraccone L, Trent JO, Chaires JB. Characterization of a K+-induced conformational switch in a human telomeric DNA oli-gonucleotide using 2-aminopurine fluorescence. Biochemistry 2010; 49: 179-94.
Gray RD, Petraccone L, Buscaglia R, Chaires JB. 2-aminopurine as a probe for quadruplex loop structures. Methods Mol Biol 2010; 608: 121-36.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.