[en] Freeze-dried cultures of P.fluorescens are used in agriculture and microbiological industry. However, P. fluorescens is very susceptible to damage during freeze-drying and subsequent storage and it would be useful to increase culture viability during storage. The viability of freeze-dried P. fluorescens strains (BTP1, PI9 and BB2) was evaluated by using the Arrhenius model. This model was described by measuring of reaction rate constants (D or k) and temperature sensitivity of rate constant (z or Ea). The freeze-dried P.fluorescens strains was stored in glass tubes at 60°C, 37°C and 4°C for 8 h, 28 days and 2 months, respectively. D value decreased or k increased with an increase of the storage temperature. By comparing their decimal reduction time (D), we observed that BB2 strain was more resistant than BTP1 and PI9 at 37 °C and 60 °C. The activation energy of all P. fluorescens strains are not significantly different and thermal inactivation may occur by the same mechanism. Thus it was possible to compare rate constants of survival for the freeze-dried P. fluorescens strains. These results will be useful to the development of improved reference materials and samples held in culture collections.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.