(a) Kroto HW, Heath JR, OBrien SC, Curl RF, Smalley RE (1985) Nature (London) 318:162; (b) Heath JR, Zhang Q, O’Brien SC, Curl RF, Kroto HW, Smalley RE (1987) J Am Chem Soc 109:359; (c) Kroto HW, Heath JR, OBrien SC, Curl RF, Smalley RE (1987) Astrophys J 314:352
Heath JR, O’Brien SC, Zhang Q, Lui Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779
See e. g.: (a) Elkind FD, O’Brien SC, Carl RF, Smalley RE (1988) J Am Chem Soc 110:4464; (b) Cox DX, Trevor DJ, Reckmann KC, Kaldor A (1986) J Am Chem Soc 108:2457; (c) Ross MM, Callaham JH (1991) J Phys Chem 95:5720; (d) Alvare MM, Gillan EG, Holczer K, Kaner RB, Min KS, Whetten RL (1991) J Phys Chem 95:10561; (e) Weisker T, Bohme DK, Hrusak J, Kratschmer W, Schwarz H (1991) Angew Chem Int Ed Engl 30:884; (f) Saunders M, Jimenez-Vazquez HA, Cross RJ, Poreda RJ (1993) Science 259:1428; (g) Shinohara H (2000) Rep Prog Phys 63:843; (h) Nishibori E, Takata M, Sakata M, Tanaka H, Hasegawa M, Shinohara H (2000) Chem Phys Lett 330:497; (i) Peres T, Cao BP, Cui WD, Khing A, Cross RJ, Saunders M, Lifshitz C (2001) Int J Mass Spectrom 210:241; (j) Murata Y, Murata M, Komatsu K (2003) J Am Chem Soc 125:7152; (k) Shiotani H, Ito T, Iwasa Y, Taninaka A, Shinohara H, Nishibori E, Takata M, Sakata M (2004) J Am Chem Soc 126:364; (l) Hu YH, Ruckenstein E (2005) J Am Chem Soc 127:11277; (m) Klingeler R, Kann G, Wirth I (2001) J Chem Phys 115:7215
(a) Cioslowski JJ (1995) Am Chem Soc 117:2553; (b) Hu YH, Ruckenstein E (2005) Am Chem Soc 127:11277; (c) Belash IT, Bronnikov AD, Zharikov OV, Palnichenko AV (1990) Synth Met 36:283; (d) Dunlap BI, Ballester JL, Schmidt PP (1992) J Phys Chem 96:9781; (e) Guha S, Nakamoto K (2005) Coord Chem Rev 249:1111; (f) Turker L, Gumus S (2006) Poly Aromat Comp 26:145; (g) Jantoljak H, Krawez N, Loa I, Tellgmann R, Campbell EEB, Litvinchuk AP, Thomsen CZ (1997) Phys Chem (Munchen) 200:157; (h) Koltover VK (2006) J Mol Liq (2006) 127:139; (i) Gromov A, Krawez N, Lassesson A, Ostrovskii DI, Campbell EEB (2002) Curr Appl Phys 2:51; (j) Popok VN, Azarko II, Gromov AV, Jönsson M, Lassesson A, Campbell EEB (2005) Solid State Commun 133:499; (k) Johnson RD, de Vries MS, Salem J, Bethune DS, Yannoni CS (1992) Nature 355:239; (l) Zhao YL, Pan XM, Zhou DF, Su ZM, Wang RS (2003) Synth Met 135:227; (m) Cioslowski J, Fleischmann ED (1991) J Chem Phys 94:3730
Odom TW, Nehl CL (2008) The so called 3M’s principle: make, measure, model. ACS Nano 2:612
(a) Wang L-S, Conceicao J, Jin CM, Smalley RE (1991) Chem Phys Lett 182:5; (b) Boltalina OV, Siderov LN, Sukhanova EV, Sorokin ID (1993) Rapid Commun Mass Spectrom 7:1009; (c) Brink C, Andersen LH, Hvelplund P, Mather D, Volstad JD (1995) Chem Phys Lett 233:52; (d) Chen G, Cooks RG, Corpuz E, Scott LT (1996) J Am Soc Mass Spectrom 7:619; (e) Wang XB, Ding LF, Wang LS (1999) J Chem Phys 110:8217; (f) For current reference see also Betowski LD, Enlow M, Riddick L, Aue DH (2006) J Phys Chem 110:12927
Generally speaking, the existence of endohedral fullerenes alone does not mean the independent existence of the corresponding hollow cages. See e. g.: Kareev IE, Kuvychko IV, Shustova NB, Lebedkin SF, Bubnov VP, Anderson OP, Popov AA, Boltalina OV, Strauss SH (2008) Angew Chem Int Ed 47:6204
Heiz U, Landman U (2006) Nanocatalysis. Springer, New York
(a) Hammer B, Nørskov JK (1995) Nature (London) 376:238; (b) Valden M, Lai X, Goodman DW (1998) Science 281:1647; (c) Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573; (d) Schmid G, Corain B (2003) Eur J Inorg Chem 3081
(a) Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 405;(b) Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301; (c) Haruta M, Tsubota S, Kobayashi T, KageyamaH, Genet MJ, Delmon B (1993) J Catal 144:175; (d) Haruta M (1997) Catal J Today 36:153; (e) Iizuka Y, Tode T, Takao T, Yatsu KI, Takeuchi T, Tsubota S, Haruta M (1999) Catal J Today 187:50; (f) Shiga A, Haruta M (2005) Appl Catal A Gen 291:6; (g) Date M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129
Gardea-Torresday JL, Parson JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Nano Lett 2:397
(a) Pyykkö P (2004) Angew Chem Int Ed 43:4412; (b) Pyykkö P (2005) Inorg Chim Acta 358:4113; (c) Pyykkö P (2008) Chem Soc Rev 37:1967
(a) Häkkinen H, Landman U (2000) Phys Rev B 62:R2287; (b) Häkkinen H, Moseler M, Landman U (2002) Phys Rev Lett 89:033401; (c) Häkkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LC (2003) J Phys Chem A 107:6168; (d) Bona˘cić-Koutecký V, Burda J, Mitric R, Ge MF, Zampella G, Fantucci P (2002) J Chem Phys 117:3120; (e) Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, Bierweiler T, Kappes MM (2002) J Chem Phys 117L:6982; (f) Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM (2002) J Chem Phys 116:4094; (g) Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994; (h) Wang JL, Wang GH, Zhao JJ (2002) Phys Rev B 66:035418; (i) Xiao L, Wang L (2004) Chem Phys Lett 392:452; (j) Olson RM, Varganov S, Gordon MS, Metiu H, Chretien S, Piecuch P, Kowalski K, Kucharski S, Musial M (2005) J Am Chem Soc 127:1049; (k) Koskinen P, Häkkinen H, Huber B, von Issendorff B, Moseler M (2007) Phys Rev Lett 98:015701; (l) Han VK (2006) J Chem Phys 124:024316; (m) Fernández EM, Soler JM, Garzón IL, Balbás LC (2004) Phys Rev B 70:165403; (n) Fernández EM, Soler JM, Balbás LC (2004) Phys Rev B 73:235433; (o) Remacle F, Kryachko ES (2004) Adv Quantum Chem 47:423; (p) Remacle F, Kryachko ES (2005) J Chem Phys 122:044304; (q) Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F (2008) Phys Rev A 77:053202; (r) Häkkinen H (2008) Chem Soc Rev 37:1847; (s) Huang W, Wang L-S (2009) Phys Rev Lett 102:153401
This term was borrowed from: (a) McAdon MH, Goddard WA III (1988) J Phys Chem 92:1352; (b) Glukhovtsev MN, Schleyer PVR (1993) Isr J Chem 33:455; (c) Danovich D, Wu W, Shaik S (1999) J Am Chem Soc 121:3165; (d) de Visser SP, Kumar D, Danovich M, Nevo N, Danovich D, Sharma PK, Wu W, Shaik S (2006) J Phys Chem A 110:8510; (e) See also Ritter SK (2007) C&EN January 29:37
Historically, the concept of a hollow cage is rooted to the fifth century B.C. when Democritus postulated the existence of immutable atoms characterized by size, shape, and motion. A motion of atoms requires the existence of a free, unoccupied, or empty space, or a void (nothingness) as a real entity [16]. The concept of the free space (free volume) was exploited 135 years ago by J. D. van der Waals in his PhD thesis [17] (see also Ref. [18] as current reference), as the volume which complements the volume excluded by a molecule
(a) See e. g. the online Edition of the Encyclopaedia Britannica; (b) Also: Prigogine I, Stengers I (1984) Order out of Chaos. Mans new dialogue with nature. Bantam Books, Toronto, p 3
van der Waals JD (1873) Continu”ıteit van den Gas en Vloeistoftoestand (The English translation: “On the Continuity of the Gas and Liquid State”), PhD thesis. University of Leiden, Leiden
Kryachko ES (2008) Int J Quantum Chem 108:198
(a) A Fullerene Work Party (1997) Pure Appl Chem 69:1411; (b) Chemical Abstracts, Index Guide 19921996, Appendix IV 162163; (c) Miyazaki T, Hiura H, Kanayama T (2002) Theoretical study of metal-encapsulating Si cage clusters: revealing the nature of their peculiar geometries. ArXiv: cond-mat/0208217v1. Accessed 12 Aug 2002; (d) See also: Ward J (1984) The artifacts of R. Buckminster Fuller: a comprehensive collection of his designs and drawings, vol 3. Garland, New York
Hoyer W, Kleinhempel R, Lörinczi A, Pohlers A, Popescu M, Sava F (2005) J Phys Condens Matter 17:S31. “The void size is defined as the diameter of the sphere of maximum size that can be introduced in an interstice without intersecting any surrounding atom defined by its radius. The position of the centre of a void is obtained by moving the starting position inside an interstice in small aleatory steps and retaining only those movements that increase the radius of the sphere that can be introduced in the interstice”
Bulusu S, Zeng XC (2006) J Chem Phys 125:154303
Bulusu S, Li X, Wang L-S, Zeng XC (2006) Proc Natl Acad Sci USA 103:8326
(a) Wang JL, Wang GH, Zhao JJ (2002) Phys Rev B 66:035418; (b) Fa W, Luo C, Dong JM (2005) Phys Rev B 72:205428
Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174
Gao Y, Bulusu S, Zeng XC (2005) J Am Chem Soc 127:156801
(a) Xing X, Yoon B, Landman U, Parks JH (2006) Phys Rev B 74:165423; (b) It is interesting to note that the hollow cage Au16 was obtained in [23b] by removing the four vertex atoms of the ground-state gold cluster Au20 (Td and by a further relaxation of the resultant one. Absolutely the reverse procedure to that proposed in the present work to obtain the hollow cage VI
Li J, Li X, Zhai H-J, Wang L-S (2003) Science 299:864
(a) Apra E, Ferrando R, Fortunelli A (2006) Phys Rev B 73:205414; (b) Ref. [13m]; (c) de Bas BS, Ford MJ, Cortie MB (2004) J Mol Struct (Theochem) 686:193; (d) Fernndez EM, Soler JM, Balbs LC (2006) Phys Rev B 73:235433; (e) Wang J, Bai J, Jellinek J, Zeng XC (2007) J Am Chem Soc 129:4110; (f) Krishnamurty S, Shafai GS, Kanhere DG, de Bas BS, Ford MJ (2007) J Phys Chem A 111:10769
Xing X, Yoon B, Landman U, Parks JH (2006) Phys Rev B 74:165423
Johansson MP, Sundholm D, Vaara J (2004) Angew Chem Int Ed 43:2678
Schmid G (2008) Chem Soc Rev 37:1909, and references therein
Schweikhard L, Herlert A, Vogel M (1999) Philos Mag B 79:1343
(a) The NIST, http://webbook.nist.gov/, reports only two of them dealing with the first electron affinity; (b) Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319; (c) See also: von Issendorff B, Cheshnovsky O (2005) Annu Rev Phys Chem 56:549; (d) Bulusu S, Zeng XC (2006) J Chem Phys 125:154303
See e.g. Last I, Levy Y, Jortner J (2002) Proc Natl Acad Sci USA 99:9107 and references therein
Karttunen AJ, Linnolahti M, Pakkanen TA, Pyykkö P (2008) Chem Commun 465
(a) King RB, Chen Z, Schleyer PVR (2004) Inorg Chem 43:4564; (b) Kryachko ES, Remacle F (2007) Int J Quantum Chem 107:2922; (c) See also: (a) Kryachko ES, Remacle F (2007) J Chem Phys 127:194305; (d) Kryachko ES, Remacle F (2008) Mol Phys 106:521; (e) Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674
Molina LM, Hammer B (2005) J Catal 233:399
Kryachko ES, Remacle F (2010) J Phys Conf Ser 248:012026
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03 (Revision C.02). Gaussian Inc., Wallington
(a) Curl RF, Smalley RE (1988) Science 242:1017; (b) Cai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) J Phys Chem 95:7564; (c) Wang L-M, Bulusu S, Zhai HJ, Zeng XC, Wang LS (2007) Angew Chem Int Ed 46:2915
(a) Gu X, Ji M, Wei SH, Gong XG (2004) Phys Rev B 70:205401; (b) Fa W, Zhou J, Luo C, Dong J (2006) Phys Rev B 73:085405; (c) Jalbout AF, Contreras-Torres FF, Prez LA, Garzn IL (2008) J Phys Chem A 112:353
(a) Sanderson RT (1951) Science 114:670; (b) Idem (1955) Science 121:207; (c) Idem (1952) J Am Chem Soc 74:272
(a) Scrocco E, Tomasi J (1973) Topics Curr Chem 42:95; (b) Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York; (c) Pullman A, Pullman B (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, p 381; (d) Murray JS, Sen K (eds) (1996) Molecular electrostatic potentials, concepts and applications, theoretical and computational chemistry, vol 3. Elsevier, Amsterdam
(a) Tielens F, Andrés J (2007) J Phys Chem C 111:10342; (b) Wang D-L, Sun X-P, Shen H-T, Hou D-Y, Zhai Y-C (2008) Chem Phys Lett 457:366
(a) Claxton TA, Shirsat RN, Gadre SR (1994) J Chem Soc Chem Commun 6:731; (b) Mauser H, Hirsch A, van Eikema Hommes NJR, Clark T (1997) J Mol Model 3:415
(a) In fact, our statement is in concord with the following statement: “It has been generally accepted that extractable EMFs [EMF=endohedral metallofullerenes] take on endohedral structures. However, definitive proof of the structure must be performed for each EMF”. Ref. [48b]; (b) Yamada M, Akasaka T, Nagase S (2010) Acc Chem Res 43:92