cobalt · iron · metalates; phosphorus; sandwich complexes
Abstract :
[en] The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing
diphosphacyclobutadiene ligands is reported. Compounds [K([18]crown-6)(thf)2][Fe(h4-
P2C2tBu2)2] (K1), [K([18]crown-6)-(thf)2][Co(h4-P2C2tBu2)2] (K2), and [K([18]crown-6)(thf)2][Co(h4-
P2C2Ad2)2] (K3, Ad=adamantyl) were obtained from reactions of [K([18]crown-6)(thf)2][M(h4-C14H10)2]
(M=Fe, Co) with tBuC P (1, 2), or with AdC P (3). Neutral sandwiches [M(h4-P2C2tBu2)2] (4: M=Fe 5: M=
Co) were obtained by oxidizing 1 and 2 with [Cp2Fe]PF6. Cyclic voltammetry and spectro-electrochemistry indicates that the pairs [M(h4-P2C2tBu2)2] / [M(h4-P2C2tBu2)2] can be reversibly interconverted
by one electron oxidation and reduction, respectively. Complexes 1–5 were characterized by multinuclear
NMR, EPR (1 and 5), UV/Vis, and Mçssbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1–3). The molecular structures of 1–5 were determined by usingX-ray crystallography. Essentially D2dsymmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the
importance of covalent metal–ligand p bonding in 1–5. Possible oxidation state assignments for the metal atoms are discussed.
Disciplines :
Chemistry
Author, co-author :
Wolf, Robert
Ehlers, Andreas W
Khusniyarov, Marat M
Hartl, Frantisek
de Bruin, Bas
Long, Gary J
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
T. J. Kealy, P. L. Pauson, Nature 1951, 168, 1039
G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward, J. Am. Chem. Soc. 1952, 74, 2125
E. O. Fischer, W. Pfab, Z. Naturforsch. B 1952, 7, 377.
Metallocenes (Eds.:, A. Togni, R.L. Halterman,), Wiley-VCH, Weinheim, 1998.
C. Elschenbroich, Organometallchemie, 6 th ed., Teubner-Verlag, Wiesbaden, 2008, pp. 446-449.
A. Efraty, Chem. Rev. 1977, 77, 691
L. Veiros, G. Dazinger, K. Kirchner, M. C. Calhorda, R. Schmid, Chem. Eur. J. 2004, 10, 5860, and references therein
D. Seyferth, Organometallics 2003, 22, 2
U. H. F. Bunz, Top. Curr. Chem. 1999, 201, 131.
Rare examples of homoleptic cyclobutadiene nickel complexes
H. Hoberg, R. Krause-Göing, R. Mynott, Angew. Chem. 1978, 90, 138
Angew. Chem. Int. Ed. Engl. 1978, 17, 123
H. Hoberg, C. Froehlich, J. Organomet. Chem. 1981, 213, C 49.
M. Regitz, Chem. Rev. 1990, 90, 191
A. C. Gaumont, J. Denis, Chem. Rev. 1994, 94, 1413
J. F. Nixon, Coord. Chem. Rev. 1995, 145, 201
Multiple Bonds and Low Coordination in Phosphorus Chemistry (Eds.:, M. Regitz, O.J. Scherer,), Thieme, Stuttgart, 1990
K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon Copy, Wiley, Chichester, 1998
F. Mathey, Angew. Chem. 2003, 115, 1616
Angew. Chem. Int. Ed. 2003, 42, 1578.
The catalytic trimerization of phosphaalkynes to triphosphabenzenes has also been described:, F. Tabellion, C. Peter, U. Fischbeck, M. Regitz, F. Preuss, Chem. Eur. J. 2000, 6, 4558.
P. Binger, B. Biedenbach, R. Schneider, M. Regitz, Synthesis 1989, 960
D. Himmel, M. Seitz, M. Scheer, Z. Anorg. Allg. Chem. 2004, 630, 1220.
P. Binger, R. Milczarek, R. Mynott, M. Regitz, W. Rösch, Angew. Chem. 1986, 98, 645
Angew. Chem. Int. Ed. Engl. 1986, 25, 644
P. B. Hitchcock, M. J. Maah, J. F. Nixon, J. Chem. Soc. Chem. Commun. 1986, 737
P. Binger, R. Milczarek, R. Mynott, C. Krüger, Y.-H. Tsay, E. Raabe, M. Regitz, Chem. Ber. 1988, 121, 637.
T. Wettling, G. Wolmershäuser, P. Binger, M. Regitz, J. Chem. Soc. Chem. Commun. 1990, 1541.
P. L. Arnold, F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, J. Am. Chem. Soc. 1996, 118, 7630
F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, J. F. Nixon, J. Chem. Soc. Chem. Commun. 1994, 489
A. G. Avent, F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, J. F. Nixon, D. M. Vickers, Angew. Chem. 1994, 106, 2406
Angew. Chem. Int. Ed. Engl. 1994, 33, 2330.
F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, D. M. Vickers, J. Organomet. Chem. 2001, 635, 212.
J. E. Ellis, Inorg. Chem. 2006, 45, 3167.
E. UrnÄ - Åius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P. v. R. Schleyer, Science 2002, 295, 832.
Preliminary communications
R. Wolf, A. W. Ehlers, J. C. Slootweg, M. Lutz, D. Gudat, M. Hunger, A. L. Spek, K. Lammertsma, Angew. Chem. 2008, 120, 4660
Angew. Chem. Int. Ed. 2008, 47, 4584
R. Wolf, J. C. Slootweg, A. W. Ehlers, F. Hartl, B. deBruin, M. Lutz, A. L. Spek, K. Lammertsma, Angew. Chem. 2009, 121, 3150
Angew. Chem. Int. Ed. 2009, 48, 3104.
G. Becker, G. Gresser, W. Uhl, Z. Naturforsch. B 1981, 36, 16
W. Rösch, T. Allspach, U. BergsträÃer, M. Regitz, in Synthetic Methods of Organometallic and Inorganic Chemistry, Vol.3 (Ed.:, W.A. Herrmann,), Thieme, Stuttgart, 1996, p. 11.
T. Allspach, M. Regitz, G. Becker, W. Becker, Synthesis 1986, 31.
W. W. Brennessel, R. E. Jilek, J. E. Ellis, Angew. Chem. 2007, 119, 6244
Angew. Chem. Int. Ed. 2007, 46, 6132.
W. W. Brennessel, V. G. Young, Jr., J. E. Ellis, Angew. Chem. 2002, 114, 1259
Angew. Chem. Int. Ed. 2002, 41, 1211.
D. Böhm, F. Knoch, S. Kummer, U. Schmidt, U. Zenneck, Angew. Chem. 1995, 107, 251
Angew. Chem. Int. Ed. Engl. 1995, 34, 198
F. W. Heinemann, S. Kummer, U. Seiss-Brandl, U. Zenneck, Organometallics 1999, 18, 2021.
M. Driess, D. Hu, H. Pritzkow, H. Schäufele, U. Zenneck, M. Regitz, W. Rösch, J. Organomet. Chem. 1987, 334, C 35.
The reduction of anion 1 to the hypothetical 18e dianion [Fe(η4-P2C2tBu2) 2]2- was not observed in the experimental potential window. In contrast, the neutral 18-electron complex [Fe(η 6-C7H8)(η4-P 2C2tBu2)2] can be reduced reversibly at low temperatures to the 19-electron radical anion [Fe(η 6-C7H8)(η4-P 2C2tBu2)2]- (-2.50V vs. SCE in DME at -60°C) and also oxidized to the corresponding 17-electron radical cation [Fe(η6-C7H 8)(η4-P2C2tBu 2)2]+ (+0.55V vs. SCE in CH2Cl 2).[21] The different, more negatively shifted redox potentials of 1 compared to the neutral, heteroleptic species [Fe(η6-C7H8) (η4-P2C2tBu2) 2] are most likely a consequence of the different charges and formal metal oxidation states of both complexes. The frontier orbitals of [Fe(η6-C7H8) (η4-P2C2tBu2) 2] are not known in detail, but it is expected that the reduction is ligand-centered, whereas the oxidation is metal-centered.
D. Hu, H. Schäufele, H. Pritzkow, U. Zenneck, Angew. Chem. 1989, 101, 929
Angew. Chem. Int. Ed. Engl. 1989, 28, 900
U. Zenneck, Angew. Chem. 1990, 102, 171
Angew. Chem. Int. Ed. Engl. 1990, 29, 126.
M. Atanasov, C. A. Daul, M.-M. Rohmer, T. Venkatachalam, Chem. Phys. Lett. 2006, 427, 449
M. Atanasov, E. J. Baerends, P. Baettig, R. Bruyndonckx, C. Daul, C. Rauzy, M. Zbri, Chem. Phys. Lett. 2004, 399, 433.
S. Deblon, L. Liesum, J. Harmer, H. Schönberg, A. Schweiger, H. Grützmacher, Chem. Eur. J. 2002, 8, 601, and references therein.
H. vanWilligen, W. E. Geiger, M. D. Rausch, Inorg. Chem. 1977, 16, 581
L. Vasquez, H. Pritzkow, U. Zenneck, Angew. Chem. 1988, 100, 705
Angew. Chem. Int. Ed. Engl. 1988, 27, 706
W. E. Geiger, P. H. Rieger, C. Corbato, J. Edwin, E. Fonseca, G. A. Lane, J. M. Mevs, J. Am. Chem. Soc. 1993, 115, 2314.
N. G. Connelly, W. E. Geiger, G. A. Lane, S. J. Raven, P. H. Rieger, J. Am. Chem. Soc. 1986, 108, 6219.
In these fits the isomer shift, Î, the quadrupole splitting, e 2Qq/2, and the relaxation rate, Î, have been varied, whereas the line width has been constrained to 0.30mms-1, the approximate line width observed for the higher velocity line at all temperatures. Further, the effective hyperfine field has been constrained to 11T, a field that is consistent with the S=1/2 ground state of 1. The relaxation of the effective hyperfine field cannot be parallel with the principal axis of the electric field gradient at the iron site as this would yield a symmetric spectrum, but must be transverse to this axis. The value of e2Qq/2 may be either positive or negative if the relaxation is normal to this gradient and along the y or x axis, respectively, that is, in the plane containing the singly occupied d x 2-y 2 orbital, and the latter case has been chosen to be consistent with the calculated negative quadrupole splitting, see Table4; the asymmetry parameter, η, has also been constrained to zero in agreement with the structure of 1 and the calculations.
S. Dattagupta, M. Blume, Phys. Rev. B 1974, 10, 4540.
G. K. Shenoy, F. E. Wagner, G. M. Kalvius, in Mössbauer Isomer Shifts, (Eds.:, G.K. Shenoy, F.E. Wagner,), North-Holland, Amsterdam, 1978, p. 49.
It is well known[30] that the Mössbauer and Debye temperatures, ÎM and ÎD, obtained from the two temperature dependencies, are usually different because they depend on and , respectively, for which is the root-mean-square vibrational velocity of the 57Fe nuclide and is the root-mean-square displacement of the 57Fe nuclide; unfortunately, there is no model independent relationship[30] between these mean-square values. However, the values of these temperatures reported[32] for other iron complexes indicate that ÎM, which is more sensitive to the high-frequency phonons, is often up to four times larger than ÎD.
T. Owen, F. Grandjean, G. J. Long, K. V. Domasevitch, N. Gerasimchuk, Inorg. Chem. 2008, 47, 8704, and the references therein.
R. V. Parish, in The Organic Chemistry of Iron, Vol.1 (Eds.:, E.A.K. vonGustorf, F. Grevels, I. Fischler,), Academic Press, New York, 1978, p. 192.
R. Deschenaux, M. Schweissguth, M. T. Vilches, A. M. Levelut, D. Hautot, G. J. Long, and, D. Luneau, Organometallics 1999, 18, 5553.
ADF2007: E.J. Baerends, J. Autschbach, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. vanFaassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, S.J.A. vanGisbergen, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, F.E. Harris, P. vanden Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, G. vanKessel, F. Kootstra, E. vanLenthe, D.A. McCormack, A. Michalak, J. Neugebauer, V.P. Nicu, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. vanWezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev, T. Ziegler, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2007.
N. C. Handy, A. J. Cohen, Mol. Phys. 2001, 99, 403.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648
C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
C. Adamo, V. Barone, A. Bencini, F. Totti, I. Ciofini, Inorg. Chem. 1999, 38, 1996
A. P. Ginsberg, J. Am. Chem. Soc. 1980, 102, 111
L. Noodleman, J. Chem. Phys. 1981, 74, 5737
L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, D. A. Case, J. Am. Chem. Soc. 1985, 107, 3418
L. Noodleman, E. R. Davidson, Chem. Phys. 1986, 109, 131
L. Noodleman, D. A. Case, A. Aizman, J. Am. Chem. Soc. 1988, 110, 1001
L. Noodleman, C. Y. Peng, D. A. Case, J. M. Mouesca, Coord. Chem. Rev. 1995, 144, 199
A. A. Ovchinnikov, J. K. Labanowski, Phys. Rev. A 1996, 53, 3946
D. Herebian, K. E. Wieghardt, F. Neese, J. Am. Chem. Soc. 2003, 125, 10997.
V. Bachler, G. Olbrich, F. Neese, K. Wieghardt, Inorg. Chem. 2002, 41, 4179.
F. Neese, J. Am. Chem. Soc. 2006, 128, 10213.
F. Neese, ORCA-an Ab Initio, Density Functional and Semiempirical Program Package, version 2.6, revision 35; Institut für Physikalische und Theoretische Chemie, Universität Bonn, Germany, July 2007.
M. M. Khusniyarov, E. Bill, T. Weyhermüller, E. Bothe, K. Harms, J. Sundermeyer, K. Wieghardt, Chem. Eur. J. 2008, 14, 7608
M. M. Khusniyarov, T. Weyhermüller, E. Bill, K. Wieghardt, J. Am. Chem. Soc. 2009, 131, 1208.
ORCA 2.6 manual, February 2007, p.296.
R. Wolf, N. Ghavtadze, K. Weber, E.-M. Schnöckelborg, B. deBruin, A. W. Ehlers, K. Lammertsma, Dalton Trans. 2010, 39, 1453.
L. Pauling, The Nature of the Chemical Bond, 3 rd ed., Cornell University Press, Ithaca, New York, 1960, p. 172 f.
R. Wolf, E.-M. Schnöckelborg, Chem. Commun. 2010, 46, 2832.
M. Krejčík, M. DanÄk, F. Hartl, J. Electroanal. Chem. Interfacial Electrochem. 1991, 317, 179.
A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41
B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys. 1979, 71, 3396
O. Vahtras, J. Almlof, M. W. Feyereisen, Chem. Phys. Lett. 1993, 213, 514.
K. Eichkorn, O. Treutler, H. Ohm, M. Haser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652
K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
F. Neese, Inorg. Chim. Acta 2002, 337, 181
S. Sinnecker, L. D. Slep, E. Bill, F. Neese, Inorg. Chem. 2005, 44, 2245.
P. O. Löwdin, J. Chem. Phys. 1950, 18, 365
P. O. Löwdin, Adv. Quantum Chem. 1970, 5, 185.
A. Klamt, G. Schuurmann, J. Chem. Soc. Perkin Trans. 2 1993, 799.
S. Portmann, Molekel, version 4.3.win32, CSCS/UNI Geneva, Switzerland, November 2002.
G.M. Sheldrick, SADABS/TWINABS: Area-Detector Absorption Correction, 1999, Universität Göttingen, Germany.
G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.