[en] Chronic obstructive pulmonary disease (COPD) has become a global epidemic disease with an increased morbidity and mortality in the world. Inflammatory process progresses and contributes to irreversible airflow limitation. However, there is no available therapy to better control the inflammatory progression and therefore to reduce the exacerbations and mortality. Thus, the development of efficient anti-inflammatory therapies is a priority for patients with COPD. beta(2) -Adrenoceptor agonists and anticholinergic agents are widely used as first line drugs in management of COPD because of their efficient bronchodilator properties. At present, many studies in vitro and some data obtained in laboratory animals reveal the potential anti-inflammatory effects of these bronchodilators but their protective role against chronic inflammation and the development of emphysema in patients with COPD remains to be investigated. The anti-inflammatory effects of theophylline at low doses have also been identified. Beneficial interactions between glucocorticoids and bronchodilators have been reported, and signaling pathways explaining these synergistic effects begin to be understood, especially for theophylline. Recent data demonstrating interactions between anticholinergics with beta(2) -adrenoceptor agonists aiming to better control the pulmonary inflammation and the development of emphysema in animal models of COPD justify the priority to investigate the interactive effects of a tritherapy associating corticoids with the two main categories of bronchodilators.
Disciplines :
Veterinary medicine & animal health Biochemistry, biophysics & molecular biology
Rabe K.F., Hurd S., Anzueto A. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. (2007) 176 532-555.
Brightling C.E., Monteiro W., Ward R. et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet (2000) 356 1480-1485.
Balzano G., Stefanelli F., Iorio C. et al. Eosinophilic inflammation in stable chronic obstructive pulmonary disease. Relationship with neutrophils and airway function. Am. J. Respir. Crit. Care Med. (1999) 160 1486-1492.
Perng D.W., Huang H.Y., Chen H.M., Lee Y.C., Perng R.P. Characteristics of airway inflammation and bronchodilator reversibility in COPD: a potential guide to treatment. Chest (2004) 126 375-381.
Zhu J., Qiu Y.S., Majumdar S. et al. Exacerbations of Bronchitis: bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants. Am. J. Respir. Crit. Care Med. (2001) 164 109-116.
Roth M. Pathogenesis of COPD. Part III. Inflammation in COPD. Int. J. Tuberc. Lung Dis. (2008) 12 375-380.
Mannino D.M., Buist A.S. Global burden of COPD: risk factors, prevalence, and future trends. Lancet (2007) 370 765-773.
MacNee W. Pathogenesis of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. (2005) 2 258-266; discussion 90-1.
Louhelainen N., Rytila P., Haahtela T., Kinnula V.L., Djukanovic R. Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulm. Med. (2009) 9 25.
Glaab T., Taube C. Effects of inhaled corticosteroids in stable chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. (2011) 24 15-22.
Black P.N., Ching P.S., Beaumont B., Ranasinghe S., Taylor G., Merrilees M.J. Changes in elastic fibres in the small airways and alveoli in COPD. Eur. Respir. J. (2008) 31 998-1004.
Barnes P.J. New therapies for chronic obstructive pulmonary disease. Med. Princ. Pract. (2010) 19 330-338.
Barnes P.J. Theophylline in chronic obstructive pulmonary disease: new horizons. Proc. Am. Thorac. Soc. (2005) 2 334-339; discussion 40-1.
Lee T.A., Schumock G.T., Bartle B., Pickard A.S. Mortality risk in patients receiving drug regimens with theophylline for chronic obstructive pulmonary disease. Pharmacotherapy (2009) 29 1039-1053.
Johnson M. Effects of beta2-agonists on resident and infiltrating inflammatory cells. J. Allergy Clin. Immunol. (2002) 110 S282-S290.
Hanania N.A., Moore R.H. Anti-inflammatory activities of beta2-agonists. Curr. Drug Targets Inflamm. Allergy (2004) 3 271-277.
Hanania N.A., Donohue J.F. Pharmacologic interventions in chronic obstructive pulmonary disease: bronchodilators. Proc. Am. Thorac. Soc. (2007) 4 526-534.
Johnson M. Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. (2006) 117 18-24; quiz 5.
Cazzola M., Matera M.G. Novel long-acting bronchodilators for COPD and asthma. Br. J. Pharmacol. (2008) 155 291-299.
Capelli A., Lusuardi M., Carli S., Zaccaria S., Trombetta N., Donner C.F. In vitro effect of beta 2-agonists on bacterial killing and superoxide anion (O 2 -) release from alveolar macrophages of patients with chronic bronchitis. Chest (1993) 104 481-486.
Mirza Z.N., Kato M., Kimura H. et al. Fenoterol inhibits superoxide anion generation by human polymorphonuclear leukocytes via beta-adrenoceptor-dependent and -independent mechanisms. Ann. Allergy Asthma Immunol. (2002) 88 494-500.
Tachibana A., Kato M., Kimura H., Fujiu T., Suzuki M., Morikawa A. Inhibition by fenoterol of human eosinophil functions including beta2-adrenoceptor-independent actions. Clin. Exp. Immunol. (2002) 130 415-423.
Ezeamuzie C.I., al-Hage M. Differential effects of salbutamol and salmeterol on human eosinophil responses. J. Pharmacol. Exp. Ther. (1998) 284 25-31.
Oddera S., Silvestri M., Lantero S., Sacco O., Rossi G.A. Downregulation of the expression of intercellular adhesion molecule (ICAM)-1 on bronchial epithelial cells by fenoterol, a beta2-adrenoceptor agonist. J. Asthma (1998) 35 401-408.
Donnelly L.E., Tudhope S.J., Fenwick P.S., Barnes P.J. Effects of formoterol and salmeterol on cytokine release from monocyte-derived macrophages. Eur. Respir. J. (2010) 36 178-186.
Sekut L., Champion B.R., Page K., Menius J.A. Jr, Connolly K.M. Anti-inflammatory activity of salmeterol: down-regulation of cytokine production. Clin. Exp. Immunol. (1995) 99 461-466.
Loven J., Svitacheva N., Jerre A., Miller-Larsson A., Korn S.H. Anti-inflammatory activity of beta2-agonists in primary lung epithelial cells is independent of glucocorticoid receptor. Eur. Respir. J. (2007) 30 848-856.
Chiu J.C., Hsu J.Y., Fu L.S., Chu J.J., Chi C.S. Comparison of the effects of two long-acting beta2-agonists on cytokine secretion by human airway epithelial cells. J. Microbiol. Immunol. Infect. (2007) 40 388-394.
Gentilini G., Grazia di Bello M., Raspanti S., Bindi D., Mugnai S., Zilletti L. Salmeterol inhibits anaphylactic histamine release from guinea-pig isolated mast cells. J. Pharm. Pharmacol. (1994) 46 76-77.
Butchers P.R., Vardey C.J., Johnson M. Salmeterol: a potent and long-acting inhibitor of inflammatory mediator release from human lung. Br. J. Pharmacol. (1991) 104 672-676.
Giebelen I.A., Leendertse M., Dessing M.C. et al. Endogenous beta-adrenergic receptors inhibit lipopolysaccharide-induced pulmonary cytokine release and coagulation. Am. J. Respir. Cell Mol. Biol. (2008) 39 373-379.
Zhang W., Fievez L., Cheu E. et al. Anti-inflammatory effects of formoterol and ipratropium bromide against acute cadmium-induced pulmonary inflammation in rats. Eur. J. Pharmacol. (2010) 628 171-178.
Bloemen P.G., van den Tweel M.C., Henricks P.A. et al. Increased cAMP levels in stimulated neutrophils inhibit their adhesion to human bronchial epithelial cells. Am. J. Physiol. (1997) 272 L580-L587.
Anderson R., Feldman C., Theron A.J., Ramafi G., Cole P.J., Wilson R. Anti-inflammatory, membrane-stabilizing interactions of salmeterol with human neutrophils in vitro. Br. J. Pharmacol. (1996) 117 1387-1394.
Linden A. Increased interleukin-8 release by beta-adrenoceptor activation in human transformed bronchial epithelial cells. Br. J. Pharmacol. (1996) 119 402-406.
Strandberg K., Palmberg L., Larsson K. Effect of formoterol and salmeterol on IL-6 and IL-8 release in airway epithelial cells. Respir. Med. (2007) 101 1132-1139.
Miyamoto M., Tomaki M., Lotvall J., Linden A. Beta-adrenoceptor stimulation and neutrophil accumulation in mouse airways. Eur. Respir. J. (2004) 24 231-237.
Maris N.A., van der Sluijs K.F., Florquin S. et al. Salmeterol, a beta2-receptor agonist, attenuates lipopolysaccharide-induced lung inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. (2004) 286 L1122-L1128.
Whelan C.J., Johnson M. Inhibition by salmeterol of increased vascular permeability and granulocyte accumulation in guinea-pig lung and skin. Br. J. Pharmacol. (1992) 105 831-838.
Tokuyama K., Lotvall J.O., Lofdahl C.G., Barnes P.J., Chung K.F. Inhaled formoterol inhibits histamine-induced airflow obstruction and airway microvascular leakage. Eur. J. Pharmacol. (1991) 193 35-39.
Advenier C., Qian Y., Koune J.D., Molimard M., Candenas M.L., Naline E. Formoterol and salbutamol inhibit bradykinin- and histamine-induced airway microvascular leakage in guinea-pig. Br. J. Pharmacol. (1992) 105 792-798.
Inoue H., Aizawa H., Matsumoto K. et al. Effect of beta 2-agonists on histamine-induced airway microvascular leakage in ozone-exposed guinea pigs. Am. J. Respir. Crit. Care Med. (1997) 156 723-727.
Whelan C.J., Johnson M., Vardey C.J. Comparison of the anti-inflammatory properties of formoterol, salbutamol and salmeterol in guinea-pig skin and lung. Br. J. Pharmacol. (1993) 110 613-618.
Bowden J.J., Sulakvelidze I., McDonald D.M. Inhibition of neutrophil and eosinophil adhesion to venules of rat trachea by beta 2-adrenergic agonist formoterol. J. Appl. Physiol. (1994) 77 397-405.
Bolton P.B., Lefevre P., McDonald D.M. Salmeterol reduces early- and late-phase plasma leakage and leukocyte adhesion in rat airways. Am. J. Respir. Crit. Care Med. (1997) 155 1428-1435.
Lagente V., Naline E., Guenon I. et al. A nitric oxide-releasing salbutamol elicits potent relaxant and anti-inflammatory activities. J. Pharmacol. Exp. Ther. (2004) 310 367-375.
Zhang W., Fievez L., Zhang F. et al. Effects of formoterol and ipratropium bromide on repeated cadmium inhalation-induced pulmonary inflammation and emphysema in rats. Eur. J. Pharmacol. (2010) 647 178-187.
Johnson M., Rennard S. Alternative mechanisms for long-acting beta(2)-adrenergic agonists in COPD. Chest (2001) 120 258-270.
Maneechotesuwan K., Essilfie-Quaye S., Meah S. et al. Formoterol attenuates neutrophilic airway inflammation in asthma. Chest (2005) 128 1936-1942.
Gabrijelcic J., Casas A., Rabinovich R.A. et al. Formoterol protects against platelet-activating factor-induced effects in asthma. Eur. Respir. J. (2004) 23 71-75.
Jeffery P.K., Venge P., Gizycki M.J., Egerod I., Dahl R., Faurschou P. Effects of salmeterol on mucosal inflammation in asthma: a placebo-controlled study. Eur. Respir. J. (2002) 20 1378-1385.
Maris N.A., de Vos A.F., Dessing M.C. et al. Antiinflammatory effects of salmeterol after inhalation of lipopolysaccharide by healthy volunteers. Am. J. Respir. Crit. Care Med. (2005) 172 878-884.
Wallin A., Pourazar J., Sandstrom T. LPS-induced bronchoalveolar neutrophilia; effects of salmeterol treatment. Respir. Med. (2004) 98 1087-1092.
Roberts J.A., Bradding P., Britten K.M. et al. The long-acting beta2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur. Respir. J. (1999) 14 275-282.
Donohue J.F., Menjoge S., Kesten S. Tolerance to bronchodilating effects of salmeterol in COPD. Respir. Med. (2003) 97 1014-1020.
Haney S., Hancox R.J. Rapid onset of tolerance to beta-agonist bronchodilation. Respir. Med. (2005) 99 566-571.
Giannini D., Di Franco A., Bacci E. et al. Tolerance to the protective effect of salmeterol on allergen challenge can be partially restored by the withdrawal of salmeterol regular treatment. Chest (2001) 119 1671-1675.
Dente F.L., Bacci E., Bartoli M.L. et al. One week treatment with salmeterol does not prevent early and late asthmatic responses and sputum eosinophilia induced by allergen challenge in asthmatics. Pulm. Pharmacol. Ther. (2004) 17 147-153.
Broadley K.J. Beta-adrenoceptor responses of the airways: for better or worse? Eur. J. Pharmacol. (2006) 533 15-27.
Ikenouchi T., Kume H., Oguma T. et al. Role of Ca(2+) mobilization in desensitization of beta-adrenoceptors by platelet-derived growth factor in airway smooth muscle. Eur. J. Pharmacol. (2008) 591 259-265.
Nino G., Hu A., Grunstein J.S., Grunstein M.M. Mechanism regulating proasthmatic effects of prolonged homologous beta2-adrenergic receptor desensitization in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. (2009) 297 L746-L757.
Kirino Y., Mio M., Fujii Y., Kamei C. Role of Src in hypersensitization to phosphodiesterase inhibitors in beta2-adrenoceptor-desensitized eosinophils. Methods Find. Exp. Clin. Pharmacol. (2003) 25 517-520.
Tsuji T., Kato T., Kimata M. et al. Differential effects of beta2-adrenoceptor desensitization on the IgE-dependent release of chemical mediators from cultured human mast cells. Biol. Pharm. Bull. (2004) 27 1549-1554.
Scola A.M., Chong L.K., Suvarna S.K., Chess-Williams R., Peachell P.T. Desensitisation of mast cell beta2-adrenoceptor-mediated responses by salmeterol and formoterol. Br. J. Pharmacol. (2004) 141 163-171.
Abraham G., Kottke C., Dhein S., Ungemach F.R. Agonist-independent alteration in beta-adrenoceptor-G-protein-adenylate cyclase system in an equine model of recurrent airway obstruction. Pulm. Pharmacol. Ther. (2006) 19 218-229.
Zhu W.J., He B., Xu M. Expression and significance of beta(2)-adrenoreceptor in inflammatory cells of patients with chronic obstructive pulmonary disease. Zhonghua Yi Xue Za Zhi. (2008) 88 2099-2102.
Giannini D., Bacci E., Dente F.L. et al. Inhaled beclomethasone dipropionate reverts tolerance to the protective effect of salmeterol on allergen challenge. Chest (1999) 115 629-634.
Paggiaro P.L., Giannini D., Di Franco A. et al. Minimal tolerance to the bronchoprotective effect of inhaled salmeterol/fluticasone combination on allergene challenge. Pulm. Pharmacol. Ther. (2006) 19 425-429.
Gross N.J., Co E., Skorodin M.S. Cholinergic bronchomotor tone in COPD. Estimates of its amount in comparison with that in normal subjects. Chest (1989) 96 984-987.
O'Donnell D.E., Lam M., Webb K.A. Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. (1999) 160 542-549.
Hsu J.Y., Perng R.P., Lu J.Y. et al. Double-blind randomized parallel group study comparing the efficacy and safety of tiotropium and ipratropium in the treatment of COPD patients in Taiwan. J. Formos. Med. Assoc. (2006) 105 708-714.
Saberi F., O'Donnell D.E. The role of tiotropium bromide, a long-acting anticholinergic bronchodilator, in the management of COPD. Treat. Respir. Med. (2005) 4 275-281.
Niewoehner D.E., Rice K., Cote C. et al. Prevention of exacerbations of chronic obstructive pulmonary disease with tiotropium, a once-daily inhaled anticholinergic bronchodilator: a randomized trial. Ann. Intern. Med. (2005) 143 317-326.
Tashkin D.P., Celli B., Senn S. et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N. Engl. J. Med. (2008) 359 1543-1554.
Barnes P.J. Frontrunners in novel pharmacotherapy of COPD. Curr. Opin. Pharmacol. (2008) 8 300-307.
Gwilt C.R., Donnelly L.E., Rogers D.F. The non-neuronal cholinergic system in the airways: an unappreciated regulatory role in pulmonary inflammation? Pharmacol. Ther. (2007) 115 208-222.
Gosens R., Zaagsma J., Meurs H., Halayko A.J. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir. Res. (2006) 7 73.
Wessler I.K., Kirkpatrick C.J. The Non-neuronal cholinergic system: an emerging drug target in the airways. Pulm. Pharmacol. Ther. (2001) 14 423-434.
Sato E., Koyama S., Okubo Y., Kubo K., Sekiguchi M. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity. Am. J. Physiol. (1998) 274 L970-L979.
Profita M., Giorgi R.D., Sala A. et al. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients. Allergy (2005) 60 1361-1369.
Buhling F., Lieder N., Kuhlmann U.C., Waldburg N., Welte T. Tiotropium suppresses acetylcholine-induced release of chemotactic mediators in vitro. Respir. Med. (2007) 101 2386-2394.
Koyama S., Sato E., Nomura H., Kubo K., Nagai S., Izumi T. Acetylcholine and substance P stimulate bronchial epithelial cells to release eosinophil chemotactic activity. J. Appl. Physiol. (1998) 84 1528-1534.
Koyama S., Rennard S.I., Robbins R.A. Acetylcholine stimulates bronchial epithelial cells to release neutrophil and monocyte chemotactic activity. Am. J. Physiol. (1992) 262 L466-L471.
Gosens R., Rieks D., Meurs H. et al. Muscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells. Eur. Respir. J. (2009) 34 1436-1443.
Profita M., Bonanno A., Siena L. et al. Acetylcholine mediates the release of IL-8 in human bronchial epithelial cells by a NFkB/ERK-dependent mechanism. Eur. J. Pharmacol. (2008) 582 145-153.
Pieper M.P., Chaudhary N.I., Park J.E. Acetylcholine-induced proliferation of fibroblasts and myofibroblasts in vitro is inhibited by tiotropium bromide. Life Sci. (2007) 80 2270-2273.
Haag S., Matthiesen S., Juergens U.R., Racke K. Muscarinic receptors mediate stimulation of collagen synthesis in human lung fibroblasts. Eur. Respir. J. (2008) 32 555-562.
Gosens R., Bos I.S., Zaagsma J., Meurs H. Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling. Am. J. Respir. Crit. Care Med. (2005) 171 1096-1102.
McQueen D.S., Donaldson K., Bond S.M. et al. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation. Toxicol. Appl. Pharmacol. (2007) 219 62-71.
Razani-Boroujerdi S., Behl M., Hahn F.F., Pena-Philippides J.C., Hutt J., Sopori M.L. Role of muscarinic receptors in the regulation of immune and inflammatory responses. J. Neuroimmunol. (2008) 194 83-88.
Cui Y.Y., Zhu L., Wang H., Advenier C., Chen H.Z., Devillier P. Muscarinic receptors involved in airway vascular leakage induced by experimental gastro-oesophageal reflux. Life Sci. (2008) 82 949-955.
Bos I.S., Gosens R., Zuidhof A.B. et al. Inhibition of allergen-induced airway remodelling by tiotropium and budesonide: a comparison. Eur. Respir. J. (2007) 30 653-661.
Cui Y., Devillier P., Kuang X. et al. Tiotropium reduction of lung inflammation in a model of chronic gastro-oesophageal reflux. Eur. Respir. J. (2010) 35 1370-1376.
Powrie D.J., Wilkinson T.M., Donaldson G.C. et al. Effect of tiotropium on sputum and serum inflammatory markers and exacerbations in COPD. Eur. Respir. J. (2007) 30 472-478.
Ma S., Lin Y.Y., Tartell L., Turino G.M. The effect of tiotropium therapy on markers of elastin degradation in COPD. Respir. Res. (2009) 10 12.
Trevethick M., Clarke N., Strawbridge M., Yeadon M. Inhaled muscarinic antagonists for COPD - does an anti-inflammatory mechanism really play a role? Curr. Opin. Pharmacol. (2009) 9 250-255.
Reinheimer T., Baumgartner D., Hohle K.D., Racke K., Wessler I. Acetylcholine via muscarinic receptors inhibits histamine release from human isolated bronchi. Am. J. Respir. Crit. Care Med. (1997) 156 389-395.
Wessler I., Holper B., Kortsik C., Buhl R., Kilbinger H., Kirkpatrick C.J. Dysfunctional inhibitory muscarinic receptors mediate enhanced histamine release in isolated human bronchi. Life Sci. (2007) 80 2294-2297.
Tracey K.J. The inflammatory reflex. Nature (2002) 420 853-859.
Kaneko Y., Takashima K., Suzuki N., Yamana K. Effects of theophylline on chronic inflammatory lung injury induced by LPS exposure in guinea pigs. Allergol. Int. (2007) 56 445-456.
Sullivan P., Bekir S., Jaffar Z., Page C., Jeffery P., Costello J. Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet (1994) 343 1006-1008.
Chen Y.H., Yao W.Z., Ding Y.L., Geng B., Lu M., Tang C.S. Effect of theophylline on endogenous hydrogen sulfide production in patients with COPD. Pulm. Pharmacol. Ther. (2008) 21 40-46.
Iiboshi H., Ashitani J., Katoh S. et al. Long-term treatment with theophylline reduces neutrophils, interleukin-8 and tumor necrosis factor-alpha in the sputum of patients with chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. (2007) 20 46-51.
Moon H.G., Kim Y.S., Choi J.P. et al. Aspirin attenuates the anti-inflammatory effects of theophylline via inhibition of cAMP production in mice with non-eosinophilic asthma. Exp. Mol. Med. (2010) 42 47-60.
Yasui K., Agematsu K., Shinozaki K. et al. Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. J. Leukoc. Biol. (2000) 67 529-535.
Yasui K., Agematsu K., Shinozaki K. et al. Effects of theophylline on human eosinophil functions: comparative study with neutrophil functions. J. Leukoc. Biol. (2000) 68 194-200.
Ichiyama T., Hasegawa S., Matsubara T., Hayashi T., Furukawa S. Theophylline inhibits NF-kappa B activation and I kappa B alpha degradation in human pulmonary epithelial cells. Naunyn Schmiedebergs Arch. Pharmacol. (2001) 364 558-561.
Ito K., Lim S., Caramori G. et al. A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc. Natl Acad. Sci. USA (2002) 99 8921-8926.
Confalonieri M., Mainardi E., Della Porta R. et al. Inhaled corticosteroids reduce neutrophilic bronchial inflammation in patients with chronic obstructive pulmonary disease. Thorax (1998) 53 583-585.
Pauwels R.A., Lofdahl C.G., Laitinen L.A. et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. (1999) 340 1948-1953.
Culpitt S.V., Maziak W., Loukidis S., Nightingale J.A., Matthews J.L., Barnes P.J. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. (1999) 160 1635-1639.
Vestbo J., Sorensen T., Lange P., Brix A., Torre P., Viskum K. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet (1999) 353 1819-1823.
Fievez L., Kirschvink N., Zhang W.H. et al. Effects of betamethasone on inflammation and emphysema induced by cadmium nebulisation in rats. Eur. J. Pharmacol. (2009) 606 210-214.
Adcock I.M., Ito K. Glucocorticoid pathways in chronic obstructive pulmonary disease therapy. Proc. Am. Thorac. Soc. (2005) 2 313-319; discussion 40-41.
Drummond M.B., Dasenbrook E.C., Pitz M.W., Murphy D.J., Fan E. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA (2008) 300 2407-2416.
Singh S., Loke Y.K. Risk of pneumonia associated with long-term use of inhaled corticosteroids in chronic obstructive pulmonary disease: a critical review and update. Curr. Opin. Pulm. Med. (2010) 16 118-122.
Johnson M. Corticosteroids: potential beta2-agonist and anticholinergic interactions in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. (2005) 2 320-325; discussion 40-1.
Cazzola M., Dahl R. Inhaled combination therapy with long-acting beta 2-agonists and corticosteroids in stable COPD. Chest (2004) 126 220-237.
Hanania N.A. The impact of inhaled corticosteroid and long-acting beta-agonist combination therapy on outcomes in COPD. Pulm. Pharmacol. Ther. (2008) 21 540-550.
Mortaz E., Rad M.V., Johnson M., Raats D., Nijkamp F.P., Folkerts G. Salmeterol with fluticasone enhances the suppression of IL-8 release and increases the translocation of glucocorticoid receptor by human neutrophils stimulated with cigarette smoke. J. Mol. Med. (2008) 86 1045-1056.
Rodrigo G.J., Castro-Rodriguez J.A., Plaza V. Safety and efficacy of combined long-acting beta-agonists and inhaled corticosteroids vs long-acting beta-agonists monotherapy for stable COPD: a systematic review. Chest (2009) 136 1029-1038.
Mensing M., Aalbers R. Comparison and optimal use of fixed combinations in the management of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. (2007) 2 107-116.
Chung K.F., Caramori G., Adcock I.M. Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: present and future. Eur. J. Clin. Pharmacol. (2009) 65 853-871.
Johnson M. Interactions between corticosteroids and beta2-agonists in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. (2004) 1 200-206.
Newton R., Leigh R., Giembycz M.A. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol. Ther. (2010) 125 286-327.
Lapperre T.S., Snoeck-Stroband J.B., Gosman M.M. et al. Effect of fluticasone with and without salmeterol on pulmonary outcomes in chronic obstructive pulmonary disease: a randomized trial. Ann. Intern. Med. (2009) 151 517-527.
Pahl A., Bauhofer A., Petzold U. et al. Synergistic effects of the anti-cholinergic R, R-glycopyrrolate with anti-inflammatory drugs. Biochem. Pharmacol. (2006) 72 1690-1696.
Perng D.W., Tao C.W., Su K.C., Tsai C.C., Liu L.Y., Lee Y.C. Anti-inflammatory effects of salmeterol/fluticasone, tiotropium/fluticasone or tiotropium in COPD. Eur. Respir. J. (2009) 33 778-784.
Jacoby D.B., Yost B.L., Kumaravel B. et al. Glucocorticoid treatment increases inhibitory m(2) muscarinic receptor expression and function in the airways. Am. J. Respir. Cell Mol. Biol. (2001) 24 485-491.
Shi L., Luo Y.L., Lai W.Y., Luo L. Effects of dexamethasone on the expression of muscarinic receptor mRNA in asthmatic guinea pig airway smooth muscle and eosinophil infiltration in bronchoalveolar lavage fluid. Di Yi Jun Yi Da Xue Xue Bao (2005) 25 986-990.
Barnes P.J. Role of HDAC2 in the pathophysiology of COPD. Annu. Rev. Physiol. (2009) 71 451-464.
Spears M., Donnelly I., Jolly L. et al. Effect of low-dose theophylline plus beclometasone on lung function in smokers with asthma: a pilot study. Eur. Respir. J. (2009) 33 1010-1017.
Ford P.A., Durham A.L., Russell R.E., Gordon F., Adcock I.M., Barnes P.J. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest (2010) 137 1338-1344.
To Y., Ito K., Kizawa Y. et al. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. (2010) 182 897-904.
Friedman M. Combined bronchodilator therapy in the management of chronic obstructive pulmonary disease. Respirology (1997) 2(Suppl 1) S19-S23.
Hanania N.A., Boota A., Kerwin E., Tomlinson L., Denis-Mize K. Efficacy and safety of nebulized formoterol as add-on therapy in COPD patients receiving maintenance tiotropium bromide: results from a 6-week, randomized, placebo-controlled, clinical trial. Drugs (2009) 69 1205-1216.
D'Urzo A.D., De Salvo M.C., Ramirez-Rivera A. et al. In patients with COPD, treatment with a combination of formoterol and ipratropium is more effective than a combination of salbutamol and ipratropium: a 3-week, randomized, double-blind, within-patient, multicenter study. Chest (2001) 119 1347-1356.
van Noord J.A., de Munck D.R., Bantje T.A., Hop W.C., Akveld M.L., Bommer A.M. Long-term treatment of chronic obstructive pulmonary disease with salmeterol and the additive effect of ipratropium. Eur. Respir. J. (2000) 15 878-885.
Tashkin D.P., Pearle J., Iezzoni D., Varghese S.T. Formoterol and tiotropium compared with tiotropium alone for treatment of COPD. COPD (2009) 6 17-25.
Cazzola M., Tashkin D.P. Combination of formoterol and tiotropium in the treatment of COPD: effects on lung function. COPD (2009) 6 404-415.
Di Marco F., Verga M., Santus P., Morelli N., Cazzola M., Centanni S. Effect of formoterol, tiotropium, and their combination in patients with acute exacerbation of chronic obstructive pulmonary disease: a pilot study. Respir. Med. (2006) 100 1925-1932.
Proskocil B.J., Fryer A.D. Beta2-agonist and anticholinergic drugs in the treatment of lung disease. Proc. Am. Thorac. Soc. (2005) 2 305-310; discussion 11-2.
Watson N., Reddy H., Eglen R.M. Characterization of muscarinic receptor and beta-adrenoceptor interactions in guinea-pig oesophageal muscularis mucosae. Eur. J. Pharmacol. (1995) 294 779-785.
Watson N., Eglen R.M. Effects of muscarinic M2 and M3 receptor stimulation and antagonism on responses to isoprenaline of guinea-pig trachea in vitro. Br. J. Pharmacol. (1994) 112 179-187.
Welte T., Miravitlles M., Hernandez P. et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. (2009) 180 741-750.
Aaron S.D., Vandemheen K.L., Fergusson D. et al. Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial. Ann. Intern. Med. (2007) 146 545-555.
Jones P.W. Triple therapy for chronic obstructive pulmonary disease: trials catching up with clinical practice? Am. J. Respir. Crit. Care Med. (2009) 180 689-690.
Barnes P.J. Chronic obstructive pulmonary disease * 12: new treatments for COPD. Thorax (2003) 58 803-808.
Churg A., Wang R., Wang X., Onnervik P.O., Thim K., Wright J.L. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax (2007) 62 706-713.
Ma D., Jiang Y., Chen F. et al. Selective inhibition of matrix metalloproteinase isozymes and in vivo protection against emphysema by substituted gamma-keto carboxylic acids. J. Med. Chem. (2006) 49 456-458.
Selman M., Cisneros-Lira J., Gaxiola M. et al. Matrix metalloproteinases inhibition attenuates tobacco smoke-induced emphysema in Guinea pigs. Chest (2003) 123 1633-1641.
Karsdal M.A., Sumer E.U., Wulf H. et al. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation. Arthritis Rheum. (2007) 56 1549-1558.
Jones N.A., Boswell-Smith V., Lever R., Page C.P. The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm. Pharmacol. Ther. (2005) 18 93-101.
Wang Y.J., Jiang Y.L., Tang H.F., Zhao C.Z., Chen J.Q. Zl-n-91, a selective phosphodiesterase 4 inhibitor, suppresses inflammatory response in a COPD-like rat model. Int. Immunopharmacol. (2010) 10 252-258.
Mori H., Nose T., Ishitani K. et al. Phosphodiesterase 4 inhibitor GPD-1116 markedly attenuates the development of cigarette smoke-induced emphysema in senescence-accelerated mice P1 strain. Am. J. Physiol. Lung Cell. Mol. Physiol. (2008) 294 L196-L204.
Menon B., Singh M., Ross R.S., Johnson J.N., Singh K. beta-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of beta1 integrin signaling and mitochondrial pathway. Am. J. Physiol. Cell Physiol. (2006) 290 C254-C261.
Senzaki H., Paolocci N., Gluzband Y.A. et al. beta-blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction. Circ. Res. (2000) 86 807-815.
Patiyal S.N., Katoch S.S. Beta-adrenoceptor agonist clenbuterol down-regulates matrix metalloproteinase (MMP-9) and results in an impairment of collagen turnover in mice left ventricle. Jpn. J. Physiol. (2005) 55 165-172.
O'Kane C.M., McKeown S.W., Perkins G.D. et al. Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome. Crit. Care Med. (2009) 37 2242-2249.
Anelli T., Mannello F., Salani M., Tonti G.A., Poiana G., Biagioni S. Acetylcholine induces neurite outgrowth and modulates matrix metalloproteinase 2 and 9. Biochem. Biophys. Res. Commun. (2007) 362 269-274.
LaCroix C., Freeling J., Giles A., Wess J., Li Y.F. Deficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress. Am. J. Physiol. Heart Circ. Physiol. (2008) 294 H810-H820.
Uemura K., Li M., Tsutsumi T. et al. Efferent vagal nerve stimulation induces tissue inhibitor of metalloproteinase-1 in myocardial ischemia-reperfusion injury in rabbit. Am. J. Physiol. Heart Circ. Physiol. (2007) 293 H2254-H2261.
Asano K., Shikama Y., Shibuya Y. et al. Suppressive activity of tiotropium bromide on matrix metalloproteinase production from lung fibroblasts in vitro. Int. J. Chron. Obstruct. Pulmon. Dis. (2008) 3 781-789.
Battram C., Charlton S.J., Cuenoud B. et al. In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5, 6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quino lin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action. J. Pharmacol. Exp. Ther. (2006) 317 762-770.
Naline E., Trifilieff A., Fairhurst R.A., Advenier C., Molimard M. Effect of indacaterol, a novel long-acting beta2-agonist, on isolated human bronchi. Eur. Respir. J. (2007) 29 575-581.
Chorley B.N., Li Y., Fang S., Park J.A., Adler K.B. (R)-albuterol elicits antiinflammatory effects in human airway epithelial cells via iNOS. Am. J. Respir. Cell Mol. Biol. (2006) 34 119-127.
Miyabayashi K., Maruyama M., Yamada T. et al. Isoproterenol suppresses cytokine-induced RANTES secretion in human lung epithelial cells through the inhibition of c-jun N-terminal kinase pathway. Biochem. Biophys. Res. Commun. (2006) 350 753-761.
Skevaki C.L., Christodoulou I., Spyridaki I.S. et al. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin. Exp. Allergy (2009) 39 1700-1710.
Baouz S., Giron-Michel J., Azzarone B. et al. Lung myofibroblasts as targets of salmeterol and fluticasone propionate: inhibition of alpha-SMA and NF-kappaB. Int. Immunol. (2005) 17 1473-1481.
Bissonnette E.Y., Befus A.D. Anti-inflammatory effect of beta 2-agonists: inhibition of TNF-alpha release from human mast cells. J. Allergy Clin. Immunol. (1997) 100 825-831.
Donnelly L.E., Tudhope S.J., Fenwick P.S., Barnes P.J. Effects of formoterol and salmeterol on cytokine release from monocyte-derived macrophages. Eur. Respir. J. (2010) 36 178-186.
Maris N.A., Florquin S., van't Veer C. et al. Inhalation of beta 2 agonists impairs the clearance of nontypable Haemophilus influenzae from the murine respiratory tract. Respir. Res. (2006) 7 57.
Casarosa P., Bouyssou T., Germeyer S., Schnapp A., Gantner F., Pieper M. Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs. J. Pharmacol. Exp. Ther. (2009) 330 660-668.