reinforcement learning; value iteration; fuzzy approximators
Abstract :
[en] Reinforcement learning (RL) is a widely used learning paradigm for adaptive agents. Well-understood RL algorithms with good convergence and consistency properties exist. In their original form, these algorithms require that the environment states and agent actions take values in a relatively small discrete set. Fuzzy representations for approximate, model-free RL have been proposed in the literature for the more difficult case where the state-action space is continuous. In this work, we propose a fuzzy approximation structure similar to those previously used for Q-learning, but we combine it with the model-based Q-value iteration algorithm. We show that the resulting algorithm converges. We also give a modif ed, serial variant of the algorithm that converges at least as fast as the original version. An illustrative simulation example is provided.
Disciplines :
Computer science
Author, co-author :
Busoniu, Lucian
Ernst, Damien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Babuska, Robert
De Schutter, Bart
Language :
English
Title :
Continuous-state reinforcement learning with fuzzy approximation
Publication date :
2007
Event name :
7th European Symposium on Adaptive Learning Agents and Multi-Agent Systems (ALAMAS-07)
Event place :
Maastricht, Netherlands
Event date :
2-3 April 2007
Audience :
International
Main work title :
Proceedings of the 7th European Symposium on Adaptive Learning Agents and Multi-Agent Systems (ALAMAS-07)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.