PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors [PAMPs, MAMPs, DAMPs et autres: Mise à jour de la diversité des éliciteurs de l'immunité des plantes]
Henry, Guillaume; Thonart, Philippe; Ongena, Marc
2012 • In Biotechnologie, Agronomie, Société et Environnement, 16 (2), p. 257-268
Defense mechanisms; Elicitors; Immunity; Pest resistance
Abstract :
[en] Plants possess a broad array of defenses that could be actively expressed in response of pathogenic organisms or parasites but also following beneficial saprophytic microorganisms recognition. Specifically, there are compounds derived from these organisms and called elicitors that are perceived by the plant to induce a locally or systemically expressed resistance. The understanding of the physiological and biological basis of these induced immunity mechanisms have greatly advanced over the past years but a deeper investigation of the mechanisms underlying the perception of elicitors is essential to develop novel strategies for pest control. The application of chemical and biological stimulators of plant immune defenses in conventional agriculture is expected to increase within the next years. Because of their organic origin and as they provide means for conferring plant protection in a non-transgenic manner, elicitors of plant immunity have a huge potential as biocontrol products. Through this review, we want to illustrate the diversity of compounds identified as stimulators of the plant immune system and describe the mechanisms by which they could be recognized at the plasma membrane level.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Henry, Guillaume; Univ. Liege - Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology, Passage des Déportés, 2, B-5030 Gembloux, Belgium
Thonart, Philippe ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Ongena, Marc ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Language :
English
Title :
PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors [PAMPs, MAMPs, DAMPs et autres: Mise à jour de la diversité des éliciteurs de l'immunité des plantes]
Publication date :
2012
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Audenaert K., Pattery T., Cornelis P. & Hofte M, 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact., 15, 1147-1156.
Ausubel F.M., 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol., 6, 973-979.
Bakker P, Ran L.X., Pieterse C.M.J. & Van Loon L.C, 2003. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can. J. Plant Pathol.-Rev. Can. Phytopathol, 25, 5-9.
Boller T. & Felix G., 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol, 60, 379-406.
Chinchilla D. et al., 2006. The Arabidopsis receptor kinase FLS2 binds fg22 and determines the specifcity of fagellin perception. Plant Cell, 18,465-476.
Cohen Y., Gisi U. & Niderman T., 1993. Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl-ester. Phytopathology, 83, 1054-1062.
Cools H.J. & Ishii H., 2002. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol. Mol. Plant Pathol, 61, 273-280.
Dangl J.L. & Jones J.D.G., 2001. Plant pathogens and integrated defence responses to infection. Nature, 411, 826-833.
Demeyer G. & Hofte M., 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology, 87, 588-593.
De Meyer G. et al., 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact., 12, 450-458.
De Vleesschauwer D. & Hofte M., 2009. Rhizobacteria-Induced Systemic Resistance. Adv. Bot. Res.,51,223-281.
Djonovic S. et al., 2006. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant-Microbe Interact., 19, 838-853.
D'Ovidio R., Mattei B., Roberti S. & Bellincampi D., 2004. Polygalacturonases,polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim. Biophys. Acta Proteins Proteomics, 1696, 237-244.
Duijff B.J., Gianinazzi-Pearson V and Lemanceau P., 1997. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fuorescens strain WCS417r. New Phytol, 135, 325-334.
Felix G. & Boller T., 2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem., 278, 6201-6208.
Fliegmann J., Mithofer A., Wanner G. & Ebel J., 2004. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem., 279, 1132-1140.
Fritz-Laylin L.K. et al., 2005. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol, 138,611-623.
Gressent F et al., 1999. Ligand specifcity of a high-affnity binding site for lipo-chitooligosaccharidic Nod factors in Medicago cell suspension cultures. Proc. Natl. Acad. Sci U.SA., 96, 4704-4709.
Gullino M.L., Leroux P. & Smith CM., 2000. Uses and challenges of novel compounds for plant disease control. Crop Prot., 19, 1-11.
Gust AA. et al., 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem., 282, 32338-32348.
Hofte M. & Bakker P.A.H.M., 2007. Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. Soil Biol, 12, 121-133.
Holley S.R. et al., 2003. Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol, 132, 1728-1738.
Hong J.K., Hwang B.K. & Kim C.H., 1999. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-beta-amino-n-butyric acid. J. Phytopathol, 147, 193-198.
Iavicoli A., Boutet E., Buchala A. & Metraux J.P., 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fuorescens CHA0. Mol. Plant-Microbe Interact., 16, 851-858.
Ipper N.S. et al., 2008. Antiviral activity of the exopolysaccharide produced by Serratia sp. Strain Gsm01 against cucumber mosaic virus. J. Microbiol. Biotechnol., 18, 67-73.
Iriti M. et al., 2010. Chitosan-induced ethylene-independent resistance does not reduce crop yield in bean. Biol. Control, 54, 241-247.
Jones J.D.G. & Dangl J.L., 2006. The plant immune system. Nature, 444, 323-329.
Jourdan E. et al., 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant Microbe Interact, 22, 456-468.
Kaku H. et al., 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. U.SA., 103, 11086-11091.
Katagiri F. & Tsuda K., 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol., 13, 459-465.
Klarzynski O. et al., 2000. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol., 124, 1027-1037.
Kombrink E. & SchmelzerE., 2001. The hypersensitive response and its role in local and systemic disease resistance. Eur. J. Plant Pathol., 107, 69-78.
Kunz W., Schurter R. & Maetzke T, 1997. The chemistry of benzothiadiazole plant activators. Pestic. Sci., 50, 275-282.
Kunze G. et al., 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 16, 3496-3507.
Lee S.W. et al., 2009. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 326, 850-853.
Leeman M. et al., 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fuorescens. Phytopathology, 86, 149-155.
Li H.P. et al., 2008. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specifc antibody and an antifungal peptide. Mol. Plant-Microbe Interact., 21, 1242-1248.
Loper J.E. & Buyer J.S., 1991. Siderophores in microbial interactions on plant surfaces. Mol. Plant-Microbe Interact., 4, 5-13.
Louws F.J. et al., 2001. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis., 85, 481-488.
Makandar R. et al., 2006. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant-Microbe Interact., 19, 123-129.
Mayers C.N. et al., 2005. Salicylic acid-induced resistance to cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol. Plant-Microbe Interact., 18, 428-434.
Meziane H. et al., 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol., 6, 177-185.
Mishra A.K., Sharma K. & Misra R.S., 2009. Purifcation and characterization of elicitor protein from Phytophthora colocasiae and basic resistance in Colocasia esculenta. Microbiol. Res., 164, 688-693.
Montesano M., Brader G. & Palva E.T, 2003. Pathogen derived elicitors: searching for receptors in plants. Mol. Plant Pathol., 4,73-79.
Mucharromah E. & Kuc J., 1991. Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber. Crop Prot., 10, 265-270.
Nicaise V., Roux M. & Zipfel C, 2009. Recent advances in PAMP-Triggered Immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol., 150, 1638-1647.
Nurnberger T, Brunner F, Kemmerling B. & Piater L., 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev., 198, 249-266.
Ongena M. et al., 2005. Isolation of an n-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol. Plant-Microbe Interact., 18, 562-569.
Ongena M. et al., 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol., 9, 1084-1090.
Ongena M. & Jacques P., 2008a. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol, 16, 115-125.
Ongena M. et al., 2008b. Amino acids, iron, and growth rate as key factors infuencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microb. Ecol, 55, 280-292.
Oostendorp M., Kunz W., Dietrich B. & Staub T, 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol, 107, 19-28.
Park S.W., Vlot A.C. & Klessig D.F, 2008. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol, 11, 436-442.
PelletierI. et al., 2002. Study by infrared spectroscopy of ultrathin flms of behenic acid methyl ester on solid substrates and at the air/water interface. J. Phys. Chem. B., 106, 1968-1976.
Persello-Cartieaux F., Nussaume L. & Robaglia C, 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ., 26, 189-199.
Pieterse C.M.J. et al., 2002. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol.,4, 535-544.
Press CM., Wilson M., Tuzun S. & Kloepper J.W., 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact., 10, 761-768.
Qian Z.G. et al., 2006. Novel synthetic 2,6-dichloroisonicotinate derivatives as effective elicitors for inducing the biosynthesis of plant secondary metabolites. Appl. Microbiol. Biotechnol., 71, 164-167.
Ran L.X. et al., 2005. Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fuorescent Pseudomonas spp. Eur. J. Plant Pathol., 113, 59-70.
Reitz M. et al., 2002. Importance of the O-antigen, core-region and lipid A of rhizobial lipopolysaccharides for the induction of systemic resistance in potato to Globodera pallida. Nematology, 4, 73-79.
Rippa S. et al., 2010. Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. ChemBioChem, 11, 2042-2049.
Ron M. & Avni A., 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistancelike gene family in tomato. Plant Cell, 16, 1604-1615.
Ryan C.A. & Pearce G., 2003. Systemins: a functionally defned family of peptide signal that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U.S.A., 100, 14577-14580.
Ryu CM. et al., 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol., 134, 1017-1026.
Schreiber K. & Desveaux D., 2008. Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol. J., 24, 245-268.
Schuhegger R. et al., 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ., 29, 909-918.
Serino L. et al., 1997. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J. Bacteriol, 179, 248-257.
Shah J., 2009. Plants under attack: systemic signals in defence. Curr. Opin. Plant Biol, 12, 459-464.
Sheen J., He P. & Shan L., 2007. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol., 9, 1385-1396.
Shiu S.H. & Bleecker A.B., 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U. S. A., 98, 10763-10768
SiddiquiI.A., Shaukat S.S., Khan G.H. & Ali N.I., 2003a. Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE-6S(+) in tomato: the infuence of NaCl, oxygen and iron levels. Soil Biol. Biochem., 35, 1625-1634.
Siddiqui MA. & Shaukat S.S., 2003b. Suppression of root-knot disease by Pseudomonas fuorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol. Biochem., 35, 1615-1623.
Tang X.R., Marciano D.L., Leeman S.E. & Amar S., 2005. LPS induces the interaction of a transcription factor, LPS-induced TNF-alpha factor, and STAT6(B) with effects on multiple cytokines. Proc. Natl. Acad. Sci. U.S.A., 102, 5132-5137.
Tran H. et al., 2007. Role of the cyclic lipopeptide massetolideA in biological control of Phytophthora infestans and n colonization of tomato plants by Pseudomonas fuorescens. New Phytol., 175, 731-742.
Vallad GE. & Goodman R.M., 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci., 44, 1920-1934.
Van Loon L.C, Bakker P.A.H.M. & Pieterse C.M.J., 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 36, 453-483.
Vanpeer R. & Schippers B., 1992. Lipopolysaccharides of plant-growth-promoting Pseudomonas sp. strain WCS417R induce resistance in carnation to Fusarium-wilt. Neth. J. Plant Pathol, 98, 129-139.
Vansuyt G. et al., 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant-Microbe Interact., 20, 441-447.
Van Wees S.C.M. et al., 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact., 10, 716-724.
Vinale F. et al., 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol, 72, 80-86.
Viterbo A. et al., 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol, 8, 737-746.
Wei G., Kloepper JW. & Tuzun S., 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under feld conditions. Phytopathology, 86, 221-224.
Yamaguchi Y., Pearce G. & Ryan CA., 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endoaenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. U.SA., 103, 10104-10109.
Yan Z.N. et al., 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology, 92, 1329-1333.
Zehnder G.W., Murphy J.F., Sikora E.J. & Kloepper J.W., 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol, 107, 39-50.
Zhou J.M. et al., 2010. Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae. Mol. Plant-Microbe Interact., 23, 940-948.
Zipfel C. et al., 2004. Bacterial disease resistance in Arabidopsis through fagellin perception. Nature, 428, 764-767.
Zipfel C. et al., 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125, 749-760.