[en] Chemical turbulent mixing induced by rotation can affect the internal distribution of μ near the energy-generating core of main-sequence stars, having an effect on the evolutionary tracks similar to that of overshooting. However, this mixing also leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behavior of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We show that for rotational velocities typical of main-sequence B-type pulsating stars, the signature of a rotationally induced mixing significantly perturbs the spectrum of gravity modes and mixed modes, and can be distinguished from that of overshooting. The cases of high-order gravity modes in Slowly Pulsating B stars and of low-order g modes and mixed modes in β Cephei stars are discussed.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Miglio, Andrea ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Montalban Iglesias, Josefa ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie