Delcenserie, Véronique ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Gestion de la qualité dans la chaîne alimentaire
Bergholz T.M., Wick L.M., Qi W., Riordan J.T., Ouellette L.M., Whittam T.S. Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium. BMC Microbiol. 2007, 7:97.
Boerlin P., McEwen S.A., Boerlin-Petzold F., Johnson R.P., Gyles C.L. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 1999, 37:497-503.
Corredig M., Dalgleish D.G. Effect of heating of cream on the properties of milk fat globule membrane isolates. J. Agric. Food Chem. 1998, 46:2533-2540.
Corredig M., Roesch R., Dalgleish D.G. Production of a novel ingredient from buttermilk. J. Dairy Sci. 2003, 86:2744-2750.
Delcenserie V., LaPointe G., Charaslertrangsi T., Rabalski A., Griffiths M. Glucose decreases virulence gene expression of Escherichia coli O157:H7. J. Food Prot. 2012, 75:748-752.
Griffin P.M., Tauxe R.V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev. 1991, 13:60-98.
Hancock J.T., Salisbury V., Ovejero-Boglione M.C., Cherry R., Hoare C., Eisenthal R., Harrison R. Antimicrobial properties of milk: Dependence on presence of xanthine oxidase and nitrite. Antimicrob. Agents Chemother. 2002, 46:3308-3310.
Heid H.W., Keenan T.W. Intracellular origin and secretion of milk fat globules. Eur. J. Cell Biol. 2005, 84:245-258.
Kanno C., Shimomura Y., Takano E. Physicochemical properties of milk-fat emulsions stabilized with bovine-milk fat globule-membrane. J. Food Sci. 1991, 56:1219-1223.
LeBlanc J.J. Implication of virulence factors in Escherichia coli O157:H7 pathogenesis. Crit. Rev. Microbiol. 2003, 29:277-296.
Lopez C. Lipid domains in the milk fat globule membrane: Specific role of sphingomyelin. Lipid Technol. 2010, 22:175-178.
Martin H.M., Hancock J.T., Salisbury V., Harrison R. Role of xanthine oxidoreductase as an antimicrobial agent. Infect. Immun. 2004, 72:4933-4939.
McClure P. Escherichia coli: Virulence, stress response and resistance. Understanding Pathogen Behavior 2005, 240-278. CRC Press LLC, Boca Raton, FL. M. Griffiths (Ed.).
Medellin-Peña M.J., Wang H., Johnson R., Anand S., Griffiths M.W. Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73:4259-4267.
Murgiano L., Timperio A.M., Zolla L., Bongiorni S., Valentini A., Pariset L. Comparison of milk fat globule membrane (MFGM) proteins of Chianina and Holstein cattle breed milk samples through proteomics methods. Nutrients 2009, 1:302-315.
Page S., Powell D., Benboubetra M., Stevens C.R., Blake D.R., Selase F. Xanthine oxidoreductase in human mammary epithelial cells: Activation in response to inflammatory cytokines. Biochim. Biophys. Acta 1998, 1381:191-202.
Parodi P.W. Cows' milk fat components as potential anticarcinogenic agents. J. Nutr. 1997, 127:1055-1060.
Paton J.C., Paton A.W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 1998, 11:450-479.
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29:e45.
Proulx F., Seidman E.G., Karpman D. Pathogenesis of Shiga toxin associated hemolytic uremic syndrome. Pediatr. Res. 2001, 50:163-171.
Rashid R.A., Tabata T.A., Oatley M.J., Besser T.E., Tarr P.I., Moseley S.L. Expression of putative virulence factors of Escherichia coli O157:H7 differs in bovine and human infections. Infect. Immun. 2006, 74:4142-4148.
Salisbury V., Pfoest A., Wiesinger-Mayer H., Lewis R., Bowker K.E., MacGowan A.P. Use of a clinical Escherichia coli isolate expressing lux genes to study the antimicrobial pharmacodynamics of moxiflaxacin. J. Antimicrob. Chemother. 1999, 43:829-832.
Sánchez-Juanes F., Alonso J.M., Zancada L., Hueso P. Glycosphingolipids from bovine milk and milk fat globule membranes: A comparative study. Adhesion to enterotoxigenic Escherichia coli strains. Biol. Chem. 2009, 390:31-40.
Sharma S.K., Dalgleish D.G. Effect of heat-treatments on the incorporation of milk serum-proteins into the fat globule-membrane of homogenized milk. J. Dairy Res. 1994, 61:375-384.
Sichien M., Thienpont N., Frederick E., Le T.T., Van Camp J., Dewettinck K. Processing means for milk fat fractionation and production of functional compounds. Dairy-Derived Ingredients 2009, 68-102. Woodhead Publishing/CRC Press, New York, NY. 1st. M. Corredig (Ed.).
Singh H. The milk fat globule membrane-A biophysical system for food applications. Curr. Opin. Colloid Interface Sci. 2006, 11:154-163.
Spitsberg V.L. Invited review: Bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci. 2005, 88:2289-2294.
Sprong R.C., Hulstein M.F.E., van der Meer R. Bovine milk fat components inhibit food-borne pathogens. Int. Dairy J. 2002, 12:209-215.
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3:H0034.
Vissac C., Lemery D., Le Corre L., Fustier P., Dechelotte P., Maurizis J.C., Bignon Y.G., Bernard-Gallon D.J. Presence of BRCA1 and BRCA2 proteins in human fat globules after delivery. Biochim. Biophys. Acta 2002, 1586:50-56.
Wang X., Hirmo R., Willen R., Wadstrom T. Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in Balb/cA mouse model. J. Med. Microbiol. 2001, 50:430-435.
Wen S.X., Teel L.D., Judge N.A., O'Brien A.D. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proc. Natl. Acad. Sci. USA 2006, 103:7082-7087.
Ye A., Singh H., Taylor M.W., Anema S. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 2002, 12:393-402.
Zeinhom M., Tellez A.M., Delcenserie V., El-Kholy A.M., El-Shinawy S.H., Griffiths M.W. Yoghurt containing bioactive molecules produced by Lactobacillus acidophilus La-5 exerts a protective effect against enterohaemorrhagic Escherichia coli (EHEC) in mice. J. Food Prot. 2012, In press.