auroral energy fluxes; seasonal variations; modeling
Abstract :
[en] Electron auroral energy flux is characterized by electron hemispheric power (Hpe) estimated since 1978 from National Oceanic and Atmospheric Administration (NOAA) and Defense Meteorological Satellite Program (DMSP) satellites after the estimates were corrected for instrumental problems and adjusted to a common baseline. Similarly, intersatellite adjusted ion hemispheric power (Hpi) estimates come from one MetOp and four NOAA satellites beginning in 1998. The hemispheric power (Hp) estimates are very crude, coming from single satellite passes referenced to 10 global activity levels, where the Hpi estimates are the difference between the total and the electron Hp (Hpi = Hpt-Hpe). However, hourly averaged NOAA/DMSP Hpe and Hpi estimates correlate well with hourly Polar Ultraviolet Imager (UVI) Hpt and Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) far ultraviolet (FUV) Hpe and Hpi estimates. Hpe winter values were larger than summer values similar to 65% of the time (when geomagnetic activity was moderate or higher), and Hpe were larger in the summer similar to 35% of the time (typically for low geomagnetic activity). Hpe was similar to 40% larger at winter solstice than summer solstice for the largest Hp from mostly nightside increases, and Hpe was similar to 35% larger in summer than winter for the smallest Hp owing to dayside auroral enhancements. Ion precipitation differed from electron precipitation because it was almost always larger in summer than winter. Hpe and Hpi increased with Kp, solar wind speed (Vsw), and negative Interplanetary Magnetic Field (IMF) B-z, similar to previous studies. Hpi also increased strongly with positive Bz. For quiet conditions, Hpe increased with increasing 10.7-cm solar flux (Sa), while Hpi increased with Sa up to Sa similar to 115 for all conditions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Emery, Barbara A
Coumans, Valérie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Evans, David S
Germany, Glynn A
Greer, M Sue
Holeman, Ernest
Kadinsky-Cade, Katharine
Rich, Frederick J
Xu, Weibin
Language :
English
Title :
Seasonal, Kp, solar wind, and solar flux variations in long-term singlepass satellite estimates of electron and ion auroral hemispheric power
Publication date :
28 June 2008
Journal title :
Journal of Geophysical Research
ISSN :
0148-0227
eISSN :
2156-2202
Publisher :
American Geophysical Union (AGU), Washington, United States - Washington
Barth, C. A., D. N. Baker, and S. M. Bailey (2004), Seasonal variation of auroral electron precipitation, Geophys. Res. Lett., 31, L04809, doi:10.1029/2003GL018892.
Brautigam, D. H., M. S. Gussenhoven, and D. A. Hardy (1991), A statistical study on the effects of IMF Bz and solar wind speed on aurora ion and electron precipitation, J. Geophys. Res., 96, 5525-5538, doi:10.1029/91JA00157.
Carbary, J. F., T. Sotirelis, P. T. Newell, and C.-I. Meng (2004), Correlation of LBH intensities with precipitating particle energies, Geophys. Res. Lett., 31, L13801, doi:10.1029/2004GL019888.
Codrescu, M. V., T. J. Fuller-Rowell, R. G. Roble, and D. S. Evans (1997a), Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 19,977-19,988, doi:10.1029/ 97JA01728.
Codrescu, M. V., T. J. Fuller-Rowell, and I. S. Kutiev (1997b), Modeling the F layer during specific geomagnetic storms, J. Geophys. Res., 102, 14,315-14,329, doi:10.1029/97JA00638.
Coumans, V., J.-C. Gérard, B. Hubert, and D. S. Evans (2002), Electron and proton excitation of the FUV aurora: Simultaneous IMAGE and NOAA observations, J. Geophys. Res., 107(A11), 1347, doi:10.1029/ 2001JA009233.
Coumans, V., J.-C. Gérard, B. Hubert, S. B. Mende, and S. W. H. Cowley (2004), Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV, J. Geophys. Res., 109, Al2205, doi:10.1029/2003JA010348.
Coumans, V., J.-C. Gerard, B. Hubert, and M. Meurant (2006), Global auroral proton precipitation observed by IMAGE-FUV: Noon and midnight brightness dependence on solar wind characteristics and IMF orientation, J. Geophys. Res., 111, A05210, doi:10.1029/2005JA011317.
Emery, B. A., D. S. Evans, M. S. Greer, E. Holeman, K. Kadinsky-Cade, F. J. Rich, and W. Xu (2005), NOAA and DMSP intersatellite adjusted hemispheric power data sets, Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Database, http://cedarweb.hao.ucar. edu/wiki/index.php/Iinstruments/ehp, Natl. Cent, for Atmos. Res., Boulder, Colo.
Emery, B. A., D. S. Evans, M. S. Greer, E. Holeman, K. Kadinsky-Cade, F. J. Rich, and W. Xu (2006), The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments, TN-470+STR, Natl. Cent. For Atmos. Res., Boulder, Colo. (Available at http://cedarweb.hao.ucar. edU/wiki/index.php/Media:Str470.pdf)
Fang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery (2007), Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi:10.1029/2006JA011867.
Foster, J. C., J. M. Holt, R. G. Musgrove, and D. S. Evans (1986), Ionospheric convection associated with discrete levels of particle precipitation, Geophys. Res. Lett., 13(7), 656-659, doi:10.I029/ GL013i007p00656.
Frey, H. U., S. B. Mende, T. J. Immel, S. A. Fuselier, E. S. Claflin, J.-C. Gerard, and B. Hubert (2002), Proton aurora in the cusp, J. Geophys. Res., 107(A7), 1091, doi: 10.1029/2001JA900161.
Fujii, R., and T. lijima (1987), Control of the ionospheric conductivities on large-scale Birkeland current intensities under geomagnetic quiet conditions, J. Geophys. Res., 92, 4505-4513, doi:10.1029/ JA092iA05p04505.
Fuller-Rowell, T. J., and D. S. Evans (1987), Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data, J. Geophys. Res., 92, 7606-7618, doi:10.1029/JA092iA07p07606.
Fuller-Rowell, T. J., M. V. Codrescu, E. A. Araujo-Pradere, and I. Kutiev (1998), Progress in developing a storm-time ionospheric correction model, Adv. Space Res., 22(6), 821-827, doi:10.1016/S0273-1177(98)00105-7.
Galand, M., T. J. Fuller-Rowell, and M. V. Codrescu (2001), Response of the upper atmosphere to auroral protons, J. Geophys. Res., 106, 127-139, doi:10.1029/2000JA002009.
Gerard, J.-C., B. Hubert, M. Meurant, V. I. Shematovich, D. V. Bisikalo, H. Frey, S. Mende, G. R. Gladstone, and C. W. Carlson (2001), Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in situ measurements, J. Geophys. Res., 106, 28,939-28,948, doi:10.1029/ 2001JA900119.
Germany, G. A., G. K. Parks, M. J. Brittnacher, J. Cumnock, D. Lummerzheim, J. F. Spann, L. Chen, P. G. Richards, and F. J. Rich (1997), Remote determination of auroral energy characteristic during substorm activity, Geophys. Res. Lett., 24(8), 995-998, doi:10.1029/97GL00864.
Germany, G. A., D. Lummerzheim, and P. G. Richards (2001), Impact of model differences on quantitative analysis of FUV auroral emissions: Total ionization cross sections, J. Geophys. Res., 106, 12,837-12,843, doi:10.1029/2000JA000354.
Hamrin, M., P. Norqvist, K. Rönnmark, and D. Fellgård (2005), The importance of solar illumination for discrete and diffuse aurora, Ann. Geophys., 25, 3481-3486.
Hardy, D. A., M. S. Gussenhoven, and E. Holeman (1985), A statistical model of auroral precipitation, J. Geophys. Res., 90, 4229-4248, doi:10.1029/JA090iA05p04229.
Hardy, D. A., M. S. Gussenhoven, R. Raistrick, and W. J. McNeil (1987), Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12,275-12,294, doi:10.1029/JA092iA11p12275.
Hardy, D. A., M. S. Gussenhoven, and D. Brautigam (1989), A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370-392, doi:10.1029/JA094iA01p00370.
Hardy, D. A., W. McNeil, M. S. Gussenhoven, and D. Brautigam (1991), A statistical model of auroral ion precipitation: 2. Functional representation of the average patterns, J. Geophys. Res., 96, 5539-5547, doi:10.1029/ 90JA02451.
Heelis, R. A., J. D. Winningham, W. B. Hanson, and J. L. Burch (1980), The relationships between high-latitude convection reversals and the energetic particle morphology observed by Atmosphere Explorer, J. Geophys. Res., 85, 3315-3324, doi:10.1029/JA085iA07p03315.
Hubert, B., J.-C. Gérard, D. S. Evans, M. Meurant, S. B. Mende, H. U. Frey, and T. J. Immel (2002), Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV, J. Geophys. Res., 107(A8), 1183, doi:10.1029/2001JA009229.
Iijima, T., and T. A. Potemra (1976), The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res., 81, 2165-2174.
Knipp, D. J., et al. (1993), Ionospheric convection response to slow, strong variations in a northward Interplanetary Magnetic Field: A case study for January 14, 1988, J. Geophys. Res., 98, 19,273-19,292, doi:10.1029/ 93JA01010.
Liou, K., P. T. Newell, C.-I. Meng, A. T. Y. Lui, M. Brittnacher, and G. Parks (1997), Synoptic auroral distribution: A survey using Polar ultraviolet imagery, J. Geophys. Res., 102, 27,197-27,205, doi:10.1029/97JA02638.
Liou, K., P. T. Newell, C.-I. Meng, M. Brittnacher, and G. Parks (1998), characteristics of the solar wind controlled auroral emissions, J. Geophys. Res., 103, 17,543-17,557, doi:10.1029/98JA01388.
Liou, K., P. T. Newell, and C.-I. Meng (2001), Seasonal effects on auroral particle acceleration and precipitation, J. Geophys. Res., 106, 5531-5542, doi:10.1029/1999JA000391.
Lu, G., et al. (1994), Interhemispheric asymmetry of the high-latitude ionospheric convection pattern, J. Geophys. Res., 99, 6491-6510.
Lu, G., A. D. Richmond, J. M. Ruohoniemi, R. A. Greenwald, M. Hairston, F. J. Rich, and D. S. Evans (2001), An investigation of the influence of data and model inputs on assimilative mapping of ionospheric electrodynamics, J. Geophys. Res., 106, 417-433, doi:10.1029/2000JA000606.
Lummerzheim, D., M. Brittnacher, D. Evans, G. A. Germany, G. K. Parks, M. H. Rees, and J. F. Spann (1997), High time resolution study of the hemispheric energy flux carried by energetic electrons into the ionosphere during the May 19/20 auroral activity, Geophys. Res. Lett., 24(8), 987-990, doi:10.1029/96GL03828.
Maeda, S., T. J. Fuller-Rowell, and D. S. Evans (1989), Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18-24, 1984, J. Geophys. Res., 94, 16,869-16,883, doi:10.1029/JA094iA12pl6869.
Marklund, G., T. Karlsson, and J. Clemmons (1997), On low-altitude particle acceleration and intense electric fields and their relationship to black aurora, J. Geophys. Res., 102, 17,509-17,522, doi:10.1029/ 97JA00334.
Marsh, D. R., R. R. Garcia, D. E. Kinnison, B. A. Boville, F. Sassi, S. C. Solomon, and K. Matthes (2007), Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306.
Mende, S. B., et al. (2000a), Far ultraviolet imaging from the IMAGE spacecraft, 1. System Design, Space Sci. Rev., 91, 243-270, doi:10.1023/ A:1005271728567.
Mende, S. B., et al. (2000b), Far ultraviolet imaging from the IMAGE spacecraft, 3. Spectral imaging of Lyman-alpha and OI 135.6 nm, Space Sci. Rev., 91, 287-318, doi:10.1023/A:1005292301251.
Mende, S. B., H. U. Frey, M. Lampton, J.-C. Gérard, B. Hubert, S. Fuselier, J. Spann, R. Gladstone, and J. L. Burch (2001), Global observations of proton and electron auroras in a substorm, Geophys. Res. Lett., 28(6), 1139-1142, doi:10.1029/2000GL012340.
Newell, P. X, and C.-I. Meng (1988), Hemispherical asymmetry in cusp precipitation near solstices, J. Geophys. Res., 93, 2643-2648, doi:10.1029/JA093iA04p02643.
Newell, P. T., Y. I. Feldstein, Y. I. Galperin, and C.-I. Meng (1996a), Morphology of nightside precipitation, J. Geophys. Res., 101, 10,737-10,748, doi:10.1029/95JA03516.
Newell, P. T., C.-I. Meng, and K. M. Lyons (1996b), Suppression of discrete aurorae by sunlight, Nature, 381, 766-767, doi:10.1038/381766a0.
Newell, P. T., C.-I. Meng, and S. Wing (1998), Relation to solar activity of intense aurorae in sunlight and darkness, Nature, 393, 342-344, doi:10.1038/30682.
Newell, P. T., S. Wing, T. Sotirelis, and C.-I. Meng (2005), Ion aurora and its seasonal variations, J. Geophys. Res., 110, A01215, doi:10.1029/ 2004JA010743.
Palmroth, M., P. Janhunen, G. Germany, D. Lummerzheim, K. Liou, D. N. Baker, C. Barth, A. T. Weatherwax, and J. Watermann (2006), Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations, Ann. Geophys., 24, 861-872.
Reiff, P. H., and J. G. Luhmann (1986), Solar wind control of the polar-cap voltage, in Proceedings of Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 453-476, Terra Sci., Tokyo.
Richardson, I. G., E. W. Cliver, and H. V. Cane (2000), Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind, J. Geophys. Res., 105, 18,203-18,213, doi:10.1029/1999JA000400.
Richardson, I. G., E. W. Cliver, and H. V. Cane (2001), Sources of geomagnetic storms for solar minimum and maximum conditions during 1972-2000, Geophys. Res. Lett., 25(13), 2569-2572, doi:10.1029/ 2001GL013052.
Richardson, I. G., H. V. Cane, and E. W. Cliver (2002), Sources of geomagnetic activity during nearly three solar cycles (1972-2000), J. Geophys. Res., 107(A8), 1187, doi:10.1029/2001JA000504.
Ridley, A. J. (2007), Effects of seasonal changes in the ionospheric conductances on magnetospheric field-aligned currents, Geophys. Res. Lett., 34, L05101, doi:10.1029/2006GL028444.
Shue, J.-H., P. T. Newell, K. Liou, and C.-I. Meng (2001a), The quantitative relationship between auroral brightness and solar EUV Pedersen conductance, J. Geophys. Res., 106, 5883-5894, doi:10.1029/2000JA003002.
Shue, J.-H., P. T. Newell, K. Liou, and C.-I. Meng (2001b), Influence of interplanetary magnetic field on global auroral patterns, J. Geophys. Res., 106, 5913-5926, doi:10.1029/2000JA003010.
Torr, M. R., et al. (1995), A far ultraviolet imager for the International Solar-Terrestrial Physics mission, Space Sci. Rev., 71, 329-383, doi:10.1007/BF00751335.
Yahnin, A. G., V. A. Sergeev, B. B. Gvozdevsky, and S. Vennerstrøm (1997), Magnetospheric source region of discrete aurora inferred from their relationship with isotropy boundaries of energetic particles, Ann. Geophys., 15, 943-958, doi:10.1007/s00585-997-0943-z.