IMAGE satellite; auroral particle precipitation; solar wind characteristics; interplanetary magnetic field
Abstract :
[en] The brightness of proton aurora observed near solar maximum at summer and winter solstices with the FUV-SI12 global imager on board the IMAGE satellite has been correlated with the solar wind and the interplanetary magnetic field characteristics measured by ACE satellite instruments. By contrast to the electron aurora, we find a strong correlation both on nightside and dayside between the proton precipitated power and the solar wind dynamic pressure calculated with 1-hour averaged solar wind data. For both southward and northward IMF, the proton power increases with \B-z\, but much more rapidly on the nightside for southward IMF orientation. Correlations for the nightside aurora were also calculated with a series of solar wind-magnetosphere coupling functions. We find highest correlation coefficients for expressions containing the dynamic pressure or involving the solar wind electric field in the Y-Z plane. The influence of the solar wind dynamic pressure on the proton aurora is tentatively explained by the effect of the pressure on the shape of the magnetosphere, generating stretching of the magnetotail and proton precipitation but also by other coupling processes between the solar wind and the magnetosphere. Adding FUV-WIC and SI13 electron aurora images in the study, we determine how proton and electron precipitations simultaneously react to solar wind and IMF characteristics and Kp. Results shows that protons are more reactive to dynamic pressure variations than electrons when B-z is positive, while the influence on of both types of particles is similar for negative B-z. The precipitating proton flux is found proportionally larger compared with the electron flux when the total auroral flux increases for low activity level. Instead, for high activity level, the proportion of the proton and the electron powers are similar when auroral power increases. Consequently, it is suggested that similar mechanisms cause proton and electron auroral precipitation for high activity levels, while they appear somewhat decoupled for lower activity conditions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Coumans, Valérie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Meurant, M.; University of Calgary - U of C. > Institute for Space Research
Language :
English
Title :
Global auroral proton precipitation observed by IMAGE-FUV: Noon and midnight brightness dependence on solar wind characteristics and IMF orientation
Publication date :
26 May 2006
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Amer Geophysical Union, Washington, United States - Washington
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Akasofu, S.-I. (1981), Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121.
Arnoldy, R. L. (1971), Signature in the interplanetary medium for substorms, J. Geophys. Res., 76, 5189.
Chua, D., G. Parks, M. Brittnacher, W. Peria, G. Germany, J. Spann, and C. Carlson (2001), Energy characteristics of auroral electron precipitation: A comparison of substorms and pressure pulse related auroral activity, J. Geophys. Res., 106, 5945.
Clemmons, J. H., et al. (2000), Observations of traveling Pc5 waves and their relation to the magnetic cloud event of January 1997, J. Geophys. Res., 105, 5441.
Coumans, V., J.-C. Gérard, B. Hubert, and D. S. Evans (2002a), Electron and proton excitation of the FUV aurora: Simultaneous IMAGE and NOAA observations, J. Geophys. Res., 107(A11), 1347, doi:10.1029/2001JA009233.
Coumans, V., J.-C. Gérard, B. Hubert, M. Meurant, and S. B. Mende (2004), Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations, Ann. Geophys., 22, 1595.
Coumans, V., J.-C. Gérard, B. Hubert, S. B. Mende, and S. W. H. Cowley (2004b), Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV, J. Geophys. Res., 109, A12205, doi:10.1029/2003JA010348.
Delcourt, D. C., J.-A. Sauvaud, R. F. Martin Jr., and T. E. Moore (1996), On the nonadiabatic precipitation of ions from the near-Earth plasma sheet, J. Geophys. Res., 101, 17, 409.
Frey, H. U., S. B. Mende, T. J. Immel, S. A. Fuselier, E. S. Claflin, J.-C. Gérard, and B. Hubert (2002), Proton aurora in the cusp, J. Geophys. Res., 107(A7), 1091, doi:10.1029/2001JA900161.
Fuselier, S. A., et al. (2001), Ion outflow observed by IMAGE: Implications for source regions and heating mechanisms, Geophys. Res. Lett., 28, 1163.
Gérard, J.-C., B. Hubert, D. V. Bisikalo, and V. I. Shematovich (2000), A model of Lyman-α line profile in the proton aurora, J. Geophys. Res., 105, 795.
Gonzales, W. D., and F. S. Mozer (1974), A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res., 79, 4186.
Hardy, D. A., M. S. Gussenhoven, and D. Brautigam (1989), A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370.
Hardy, D. A., W. McNeil, M. S. Gussenhoven, and D. Brautigam (1991), A statistical model of auroral ion precipitation: 2. Functional representation of the average patterns, J. Geophys. Res., 96, 5539.
Hubert, B., J. C. Gérard, D. S. Evans, M. Meurant, S. B. Mende, H. U. Frey, and T. J. Immel (2002), Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV, J. Geophys. Res., 107(A8), 1183, doi:10.1029/2001JA009229.
Hubert, B., J.-C. Gérard, A. Fuselier, and S. B. Mende (2003), Observation of dayside subauroral proton flashes with the IMAGE-FUV imagers, Geophys. Res. Lett., 30(3), 1145, doi:10.1029/2002GL016464.
Jacobsen, B., P. E. Sandholt, W. J. Burke, W. F. Denig, and N. C. Maynard (1995), Optical signatures of the prenoon auroral precipitation: Sources and responses to solar wind variations, J. Geophys. Res., 100, 8003.
Kamide, Y., and J. D. Winningham (1977), A statistical study of the "instantaneous" nightside auroral oval: The equatorward boundary of the electron precipitation as observed by the Isis 1 and 2 satellites, J. Geophys. Res., 82, 5573.
Kan, J. R., and L. C. Lee (1979), Energy coupling functions and solar wind magnetosphere dynamo, Geophys. Res. Lett., 6, 577.
Lasen, K., and C. Danielsen (1978), Quiet time pattern of auroral arcs for different directions of the interplanetary magnetic field in the Y-Z plane, J. Geophys. Res., 83, 5277.
Liou, K., P. T. Newell, C.-I. Meng, M. Brittnacher, and G. Parks (1998), Characteristics of the solar wind controlled auroral emissions, J. Geophys. Res., 103, 17,543.
Makita, K., C.-I. Meng, and S.-I. Akasofu (1983), The shift of the auroral electron precipitation boundaries in the dawn-dusk sector in the association with geomagnetic activity and interplanetary magnetic field, J. Geophys. Res., 88, 7967.
Mende, S. B., et al. (2000), Far Ultraviolet imaging from the IMAGE spacecraft. 1. System design, Space Sci. Rev., 91, 243.
Mende, S. B., H. U. Frey, T. J. Immel, D. G. Mitchell, and J. C. Gérard (2002), Global comparison of magnetospheric ion fluxes and auroral precipitation during a substorm, Geophys. Res. Lett., 29(12), 1609, doi:10.1029/2001GL014143.
Meurant, M., J.-C. Gérard, B. Hubert, V. Coumans, V. I. Shematovich, D. V. Bisikalo, D. S. Evans, G. R. Gladstone, and S. B. Mende (2003a), Characterization and dynamics of the auroral electron precipitation during substorms deduced from IMAGE-FUV, J. Geophys. Res., 108(A6), 1247, doi:10.1029/2002JA009685.
Meurant, M., J.-C. Gérard, B. Hubert, V. Coumans, C. Blockx, N. Østgaard, and S. B. Mende (2003b), Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse, Geophys. Res. Lett., 30(20), 2032, doi:10.1029/2003GL018017.
Newell, P. T., and C.-I. Meng (1994), Ionospheric projections of magneospheric regions under low and high solar wind pressure conditions, J. Geophys. Res., 99, 273.
Newell, P. T., S. Wing, T. Sotirelis, and C.-I. Meng (2005), Ion aurora and its seasonal variations, J. Geophys. Res., 110, A01215, doi:10.1029/2004JA010743.
Perreault, P., and S.-I. Akasofu (1978), A study of geomagnetic storms, Geophys. J.R. Astron. Soc., 54, 547.
Sergeev, V. A., E. M. Sazhina, N. A. Tsyganenko, J. Å. Lundblad, and F. Søraas (1983), Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere, Planet. Space Sci., 31, 1147.
Sergeev, V. A., G. R. Bikkuzina, and P. T. Newell (1997), Dayside isotropic precipitation of energetic protons, Ann. Geophys., 15, 1233.
Shue, J.-H., P. T. Newell, K. Liou, and C.-I. Meng (2002), Solar wind density and velocity control of auroral brightness under normal interplanetary magnetic field conditions, J. Geophys. Res., 107(A12), 1428, doi:10.1029/2001JA009138.
Solomon, S. C., P. B. Hays, and V. Abreu (1988), The auroral 6300 Å emission: Observation and modeling, J. Geophys. Res., 93, 9867.
Spann, J. F., M. Brittnacher, R. Elsen, G. A. Germany, and G. K. Parks (1998), Initial response and complex polar cap structures of the aurora in response to the January 10, 1997 magnetic cloud, Geophys. Res. Lett., 25, 2577.
Tsurutani, B. T., et al. (2001), Auroral zone dayside precipitation during magnetic storm initial phases, J. Atmos. Sol. Terr. Phys., 63, 513.
Tsyganenko, N. A. (1990), Quantitative models of the magnetospheric magnetic field: Methods and results, Space Sci. Rev., 54, 75.
Vasyliunas, V. M., J. R. Kan, G. L. Siscoe, and S.-I. Akasofu (1982), Scaling relations governing magnetospheric energy transfer, Planet. Space Sci., 30, 359.
Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983), Comparison of the S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 88, 5727.
Zhou, X., and B. T. Tsurutani (1999), Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks), Geophys. Res. Lett., 26, 1097.
Zhou, X.-Y., R. J. Strangeway, P. C. Anderson, D. G. Sibeck, B. T. Tsurutani, G. Haerendel, H. U. Frey, and J. K. Arballo (2003), Shock aurora: FAST and DMSP observations, J. Geophys. Res., 108(A4), 8019, doi:10.1029/2002JA009701.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.