Adrian M. et al., 2000. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem., 48(12), 6103-6105.
Alvindia D.G., Kobayashi T., Yaguchi Y. & Natsuaki K.T., 2000. Symptoms and the associated fungi of post-harvest diseases on non-chemical bananas imported from the Philippines. Jpn. J. Trop. Agric., 44, 87-93.
Asami D.K., Hong Y.J., Barrett D.M. & Mitchell A.E., 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem., 51, 1237-1241.
Beveraggi A., Mourichon X. & Sallé G., 1995. Étude comparée des premières étapes de l'infection chez des bananiers sensibles et résistants infectés par Cercospora fijiensis, agent de la maladie des raies noires. Can. J. Bot., 73, 1328-1337.
Cheynier V., 2005. Polyphenols in foods are more complex than often thought. Am. J. Clin. Nutr., 81, 223-229.
Collingborn F.M.B., Gowen S.R. & Mueller-Harvey I., 2000. Investigations into the biochemical basis for nematodes resistance in roots of three Musa cultivars in response to Radopholus similis infection. J. Agric. Food Chem., 48, 5297-5301.
de Ascensao A.R.F.D.C. & Dubery I.A., 2003. Soluble and wall-bound polyphenols and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry, 63, 679-686.
Dixon R.A. et al., 2002. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant Pathol., 3, 371-390.
Douce R., 2005. Les plantes supérieures: divines et/ou diaboliques. Conférences et débats sur les grands défis du 21esiècle. Paris: Institut de France, Académie des Sciences.
El Hadrami A., 1997. Proanthocyanidines constitutives des feuilles de bananiers et résistance partielle vis-à-vis de Mycosphaerella fijiensis, l'agent causal de la maladie des raies noires. Mémoire: Faculté universitaire des Sciences agronomiques de Gembloux (Belgique).
Ferreira R.B. et al., 2007. The role of plant defence proteins in fungal pathogenesis. Mol. Plant Pathol., 8, 677-700.
Finlay A.R. & Brown A.E., 1993. The relative importance of Colletotrichum musae as a crown rot pathogen on Windward Island bananas. Plant Pathol., 42, 67-74.
Forret M., 2008. Étude de la variation de sensibilité des bananes d'exportation aux pourritures de couronne en fonction du stade de récolte. Mémoire: Faculté universitaire des Sciences agronomiques de Gembloux (Belgique).
Ghasemzadeh A., Jaafar H.Z.E. & Rahmat A., 2010. Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. Int. J. Mol. Sci., 11, 4539-4555.
He F. et al., 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 15, 9057-9091.
Kalt W., 2005. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci., 70(1), 11-19.
Kamo T. et al., 1998. Phenylphelanone-type phytoalexins from unripe bungulan banana fruit. Biosci. Biotechnol. Biochem., 62, 95-101.
Kamo T. et al., 2001. New phenylphenalenones from banana fruit. Tetrahedron, 57, 7649-7656.
Kanazawa K. & Sakakibara H., 2000. High content of dopamine, a strong antioxidant, in Cavendish banana. J. Agric. Food Chem., 48, 844-848.
Kavino M. et al., 2009. Biochemical markers as a useful tool for the early identification of Fusarium oxysporum f. sp. cubense, race 1 resistance banana clones. Arch. Phytopathol. Plant Prot., 42(11), 1069-1078.
Khan T.A., Mazid M. & Mohammad F., 2011. Status of secondary plant products under abiotic stress: an overview. J. Stress Physiol. Biochem., 7(2), 75-98.
Krauss U. & Johanson A., 2000. Recent advances in the control of crown rot of banana in the Windward Islands. Crop Prot., 19, 151-160.
Ksouri R. et al., 2008. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C.R. Biol., 331(11), 865-873.
Kulma A. & Szopa J., 2007. Catecholamines are active compounds in plants. Plant Sci., 172, 433-440.
Lassois L., de Lapeyre Bellaire L. & Jijakli M.H., 2008. Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biol. Control, 45, 410-418.
Lassois L. et al., 2010a. Hand position on the bunch and source-sink ratio influence the banana fruit susceptibility to crown rot disease. Ann. Appl. Biol., 156(2), 221-229.
Lassois L., Jijakli M.H., Chillet M. & de Lapeyre Bellaire L., 2010b. Crown rot of bananas: pre-harvest factors involved in post-harvest disease development and integrated control methods. Plant Disease, 94(6), 648-658.
Lassois L. et al., 2011. Identification of genes involved in the response of banana to crown rot disease. Mol. Plant-Microbe Interact., 24, 143-153.
Lattanzio V., Lattanzio V.M.T. & Cardinali A., 2006. Role of polyphenols in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F., ed. Phytochemistry: advances in research. Trivandrum, Kerala, India: Research Signpost, 23-67.
Lepoivre P., 2003. Phytopathologie: bases moléculaires et biologiques des pathosystèmes et fondements des stratégies de lutte. Bruxelles: Éditions De Boeck Université.
Loeillet D., 2005. Le commerce international de la banane: entre évolution et révolution. Fruitrop, 129, 2-19.
Luis J.G. et al., 1993. Irenolone and emenolone: two new types of phytoalexin from Musa paradisica. J. Org. Chem., 58, 4306-4308.
Lukezic F.L., Kaiser W.J. & Martinez M.M., 1967. The incidence of crown rot of boxed bananas in relation to microbial populations of the crown tissue. Can. J. Bot., 45, 413-421.
Macheix J., Fleuriet A. & Billot J., 1990. Phenolic compounds in fruit processing. In: Macheix J., Fleuriet A. & Billot J., eds. Fruit phenolics. Boca Raton, FL, USA: CRC Press, 239-312.
Macheix J.-J., Fleuriet A. & Jay-Allemand C., 2005. Les composés phénoliques des végétaux: un exemple de métabolites secondaires d'importance économique. Lausanne, Suisse: Presses Polytechniques et Universitaires Romandes.
Manach C. et al., 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 79, 727-747.
Mandal S. & Mitra A., 2007. Reinforcement of cell in roots of Lycopersicon esculentum through induction of phenolics and lignin by elicitors. Physiol. Mol. Plant Pathol., 71, 201-209.
Maneenuam T., Ketsa S. & van Doorn W.G., 2007. High oxygen levels promote peel spotting in banana fruit. Postharvest Biol. Technol., 43, 128-132.
Mendez C.d.M.V. et al., 2003. Content of free phenolic compounds in bananas from Tenerife (Canary Islands) and Ecuador. Eur. Food Res. Technol., 217, 287-290.
Mendoza E.M.T. et al., 1992. Les polyphénols des bananes à cuire. Changements pendant le mûrissage et la cuisson et relations avec l'astringence. Philippines J. Crop Sci., 17(3), 155-161.
Mota R.V. et al., 2010. Biochemical and agronomical responses of grapevines to alteration of source-sink ratio by cluster thinning and shoot trimming. Bragantia Campinas, 69(1), 17-25.
Muirhead I.F. & Deverall B.J., 1984. Evaluation of 3,4-dihydroxybenzaldehyde, dopamine and its oxidation products as inhibitors of Colletotrichum musae (Berk. & Curt.) Arx. in green banana fruits. Aust. J. Bot., 32, 375-382.
Muirhead I.F. & Jones D.R., 2000. Fungal diseases of banana fruit. Post-harvest diseases. In: Jones D.R., ed. Diseases of banana, abaca and ensete. Wallingford, UK: CABI.
Mulvena D., Edwin C.W. & Zerner B., 1969. 4-dihydroxybenzaldehyde, a fungistatic substance from green Cavendish bananas. Phytochemistry, 8, 393-395.
Panina Y., Frave D.R., Baker C.J. & Shcherbakova L.A., 2007. Biocontrol and plant pathogenic Fusarium oxysporum-induced changes in phenolic compounds in tomato leaves and roots. J. Phytopathol., 155, 475-481.
Passardi F., Penel C. & Dunand C., 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci., 9, 534-540.
Pollard M., Beisson F., Li Y. & Ohlrogge J.B., 2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci., 13, 236-246.
Pombo M.A., Rosli H.G., Martínez G.A. & Civello P.M., 2011. UV-C treatment affects the expression and activity of defence genes in strawberry fruit (Fragaria×ananassa, Duch.). Postharvest Biol. Technol., 59, 94-102.
Scalbert A. & Williamson G., 2000. Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2070S-2085S.
Schreiber L., 2010. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci., 15, 546-553.
Shillingford C.A., 1978. Climatic factors affecting post-harvest decay of Jamaican bananas. J. Agric. Univ. Puerto Rico, 63(1), 45-49.
Someya S., Yoshiki Y. & Okubo K., 2002. Antioxydant compounds from bananas (Musa cavendish). Food Chem., 79, 351-354.
Treutter D., 2010. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. Int. J. Mol. Sci., 11, 807-857.
Valette C. et al., 1998. Histochemical and cytochemical investigations of phenols in roots of banana infected by burrowing nematode Radopholus similis. Phytopathology, 88, 1141-1148.
Van Loon L.C., Rep M. & Pieterse C.M.J., 2006. Significance of inducible defence-related proteins in infected plants. Annu. Rev. Phytopathol., 44, 135-162.
Wade N.L., Tan S.C. & Kavanagh E.E., 1993. White light prevent increased catechin synthesis by ultraviolet irradiation in banana fruits. J. Hortic. Sci., 68, 637-644.
Wuyts N. et al., 2007. Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathol., 56(5), 878-890.
Xu C. et al., 2011. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate. J. Agric. Food Chem., 59(4), 1078-1086.
Xu F. et al., 2008. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr. J. Biotechnol., 7(6), 721-729.
Yoruk R. & Marshal M.R., 2003. Physicochemical properties and function of plant polyphenol oxidase: a review. J. Food Biochem., 27, 361-422.
Zhu H.H. & Yao Q., 2004. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J. Phytopathol., 152, 537-542.