X-ray; Mission; Gamma-ray bursts; Clusters of galaxies; Warm-hot intergalactic medium; Chemical evolution
Abstract :
[en] ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts ( z ˜0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm[SUP]2[/SUP]/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ˜65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit.
Research Center/Unit :
LiSRI - Liège Space Research Institute - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
den Herder, Jan-Willem; SRON Netherlands Institute for Space Research
Piro, Luigi; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Ohashi, Takaya; Tokyo Metropolitan University
Kouveliotou, Chryssa; Marshall Space Flight Center
Hartmann, Dieter H.; Department of Physics and Astronomy, Clemson University
Kaastra, Jelle S.; SRON Netherlands Institute for Space Research
Amati, L.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Andersen, M. I.; Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen
Arnaud, M.; Service d'Astrophysique, CEA Saclay
Attéia, J.-L.; Observatoire Midi-Pyrénées, LAT
Bandler, S.; NASA Goddard Space Flight Center
Barbera, M.; INAF-Istituto di Astrofisica Spaziale
Barcons, X.; IFCA
Barthelmy, S.; NASA Goddard Space Flight Center
Basa, S.; Observatoire de Marseille
Basso, S.; INAF, Osservatorio Astronomico Brera
Boer, M.; Observatoire de Haute Provence
Branchini, E.; Università Roma III
Branduardi-Raymont, G.; Mullard Space Science Laboratory, University College of London
Borgani, S.; INAF-Osservatorio Astronomico
Boyarsky, A.; CERN
Brunetti, G.; INAF-IRA
Budtz-Jorgensen, C.; DNSC/Technical University of Denmark
Burrows, D.; Penn State University
Butler, N.; University of California
Campana, S.; INAF, Osservatorio Astronomico Brera
Caroli, E.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Ceballos, M.; IFCA
Christensen, F.; DNSC/Technical University of Denmark
Churazov, E.; Max-Planck-Insitut für Astrophysik
Comastri, A.; INAF-Osservatorio Astronomico
Colasanti, L.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Cole, R.; Mullard Space Science Laboratory, University College of London
Content, R.; Durham University
Corsi, A.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Costantini, E.; SRON Netherlands Institute for Space Research
Conconi, P.; INAF, Osservatorio Astronomico Brera
Cusumano, G.; INAF-Istituto di Astrofisica Spaziale
de Plaa, J.; SRON Netherlands Institute for Space Research
De Rosa, A.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Del Santo, M.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Di Cosimo, S.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
De Pasquale, M.; Mullard Space Science Laboratory, University College of London
Doriese, R.; NIST
Ettori, S.; INAF-Osservatorio Astronomico
Evans, P.; Leicester University
Ezoe, Y.; Tokyo Metropolitan University
Ferrari, L.; Istituto Nazionale di Fisica Nucleare
Finger, H.; University Space Research Association
Figueroa-Feliciano, T.; MIT
Friedrich, P.; Max-Planck-Institut für Extraterrestrische Physik
Fujimoto, R.; Kanazawa University
Furuzawa, A.; Nagoya University
Fynbo, J.; Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen
Gatti, F.; Istituto Nazionale di Fisica Nucleare
Galeazzi, M.; University of Miami
Gehrels, N.; NASA Goddard Space Flight Center
Gendre, B.; INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica
Balestra, I., Tozzi, P., Ettori, S., Rosati, P., Borgani, S., Mainieri, V., Norman, C.: Evolution in the iron abundance of the ICM. P Th PS 169, 49 (2007).
Bastian, N., Covey, K. R., Meyer, M. R.: A universal stellar initial mass function? A critical look at variations. ARA& A 48, 339 (2010).
Breeveld, A. A., Curran, P. A., Hoversten, E. A., et al.: Further calibration of the Swift ultraviolet/optical telescope. MNRAS 406, 1687 (2010).
Branchini, E., Ursino, E., Corsi, A., et al.: Studying the warm hot intergalactic medium with gamma-ray bursts. ApJ 697, 328 (2009).
Borgani, S., Murante, G., Springel, V., et al.: X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation. MNRAS 348, 1078 (2004).
Bromm, V., Loeb, A.: GRB cosmology: probing the early universe. AIPC 937, 532 (2007).
Butler, N. R., Bloom, J. S., Poznanski, D.: The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts. ApJ 711, 495 (2010).
Bykov, A. M., Paerels, F. B. S., Petrosian, V.: Equilibration processes in the warm-hot intergalactic medium. SSRv 134, 141 (2008).
Campana, S., Romano, P., Covino, S., et al.: Evidence for intrinsic absorption in the Swift X-ray afterglows. A& A 449, 61 (2006).
Cen, R., Ostriker, J. P.: Where are the baryons? II. Feedback effects. ApJ 650, 560 (2006).
Chieffi, A., Limongi, M.: Explosive yields of massive stars from Z = 0 to Z = Zsolar. ApJ 608, 405 (2004).
de Plaa, J., Werner, N., Bleeker, J. A. M., Vink, J., Kaastra, J. S., Méndez, M.: Constraining supernova models using the hot gas in clusters of galaxies. A& A 465, 345 (2007).
Diemand, J., Kuhlen, M., Madau, P.: Clumps and streams in the local dark matter distribution. Nature 454, 735 (2008).
Gallerani, S., Salvaterra, R., Ferrara, A., Choudhury, T. R.: Testing reionization with gamma-ray burst absorption spectra. MNRAS 388, L84 (2008).
Gottardi, L., et al.: Proc. ASC (2010, in press).
Greiner, J., Krühler, T., Klose, S., et al.: The nature of "dark" gamma-ray bursts. A& A 526, A30 (2011).
Heger, A., Woosley, S. E.: Nucleosynthesis and evolution of massive metal-free stars. ApJ 724, 341 (2010).
Jakobsson, P., Levan, A., Fynbo, J. P. U.: A mean redshift of 2. 8 for Swift gamma-ray bursts. A& A 447, 897 (2006).
Kilbourne, C. A., Doriese, W. B., Bandler, S. R.: Multiplexed readout of uniform arrays of TES X-ray microcalorimeters suitable for constellation-X. Proc. SPIE. 7011, 701104 (2008).
Loeb, A., Ferrara, A., Ellis, R. S.: First Light in the Universe. Springer (2008).
McCammon, D., Almy, R., Apodaca, E., et al.: A high spectral resolution observation of the soft x-ray diffuse background with thermal detectors. ApJ 576, 188 (2002).
Natalucci, L.; Feroci, M.; Quadrini, E., et al.: Design of a CZT gamma-camera for GRB and fast transient follow-up: a wide-field-monitor for the EDGE mission. Proc. SPIE 6686, 66860T (2007).
Nicastro, F., Zezas, A., Drake, J., et al.: Chandra discovery of a tree in the X-ray forest toward PKS 2155-304: the local filament? ApJ 573, 157 (2002).
Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., Maeda, K.: Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424 (2006). doi: 10. 1016/j. nuclphysa. 2006. 05. 008.
Paerels, F. B. S., Kaastra, J., Ohashi, T., Richter, P., Bykov, A., Nevalainen, J.: Future instrumentation for the study of the warm-hot intergalactic medium. SSRv 134, 405 (2008).
Salvaterra, R., Della Valle, M., Campana, S., et al.: GRB090423 at a redshift of z ~ 8. 1. Nature 461, 1258 (2009).
Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K., Bromm, V.: Low-mass relics of early star formation. Nature 422, 869 (2003).
Smith, S. J., Bandler, S. R., Brekosky, R. P., et al.: Development of position-sensitive transition-edge sensor x-ray detectors. IEEE Trans. Appl. Supercond. (2009). doi: 10. 1109/TASC. 2009. 2019557.
Snowden, S. L., Egger, R., Freyberg, M. J.: ROSAT survey diffuse x-ray background maps. II. ApJ 485, 125 (1997).
Springel, V., Frenk, C. S., White, S. D. M.: The large-scale structure of the universe. Nature 440, 1137 (2006).
Takei, Y., Ursino, E., Branchini, E., et al.: Studying the warm-hot intergalactic medium in emission. ApJ (2010). arXiv: 1011. 2116.
Ursino, E., Branchini, E., Galeazzi, M., et al.: Expected properties of the two-point autocorrelation function of the IGM. MNRAS 413 (2010). doi: 10. 1111/j. 1365-2966. 2011. 18597. x.
Viel, M., Haehnelt, M. G., Springel, V.: Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra. MNRAS 354, 684 (2004).
Werner, N., de Plaa, J., Kaastra, J. S.: XMM-Newton spectroscopy of the cluster of galaxies 2A 0335+096. A& A 449, 475 (2006).