[en] Cell transfection relies upon the delivery of genomic material within cells in order to express selected DNA sequences. Non-viral gene delivery systems are preferable over viral vectors for several reasons: biosafety, low immunogenicity, higher loading capacity, and easiness of production. Their major drawbacks actually are their limited efficiency in vivo compared to viruses, their cytotoxicity and the fact that they are rapidly cleared up from the bloodstream. The aim of our study was to better characterize the physico-chemical behavior of the polycations based on poly(2-(dimethylamino)ethyl methacrylate)-co-poly(ethyleneglycol) and to control the formulation step to produce the polyelectrolyte complexes.
Research Center/Unit :
CEIB - Centre Interfacultaire des Biomatériaux - ULiège
Disciplines :
Microbiology Biotechnology
Author, co-author :
Grandfils, Christian ; Université de Liège - ULiège > Biochimie et physiologie générale
Emonds-Alt, J.
Language :
English
Title :
Optimization of poly(2-(dimethylamino)ethyl methacrylate)-co-poly(ethyleneglycol)/DNA complexes designed for cell transfection
Publication date :
December 2005
Journal title :
Minerva Biotecnologica
ISSN :
1120-4826
eISSN :
1827-160X
Publisher :
Edizioni Minerva Medica, Turin, Italy
Volume :
17
Issue :
4
Pages :
237-243
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Nouveaux polycations et vectorisation d’ADN dans les cellules de parois vasculaires” Convention Région Wallonne n° 14612, année 2001-2004 dans le cadre du concours Initiative 2000
Pantoustier N, Moins S, Wautier M, Degee P, Dubois P. Solvent-free synthesis and purification of poly[2-(dimethylamino)ethyl methacrylate] by atom transfer radical polymerization. Chem Commun (Camb) 2003:340-1.
Ydens I, Moins S, Botteman F, Degée P, Dubois P. Removal of copper-based catalyst in atom transfer radical polymerization using different extraction techniques. e-Polymer 2004;39:1-7.
Pirotton S, Muller C, Pantoustier N, Botteman F, Collinet S, Grandfils C et al. Enhancement of transfection efficiency through rapid and noncovalent post-PEGylation of poly(dimethylaminoethyl methacrylate)/DNA complexes. Pharm Res 2004;21:1471-9.
Emonds-Alt J. Optimisation de nanovecteurs destinés à la thérapie génique. Graduate thesis in chemistry, CEIB, Faculty of Sciences, University of Liège; 2003-2004.
Huglin MB. Light scattering from polymer solutions. In: Loebl EM, editor. Specific refractive index increments. London, New York: Academic Press; 1972. p. 165-331.
Franks F, Skaer HL, Roberts B, Asquith MH. Structure in aqueous polymer solutions: a comparison by scanning calorimetry, electron microscopy and theology. Journées de Calorimétrie et d'Analyse Thermique 1978;9-BC9:47-54.
Lee LK, Mount CN, Shamlou PA. Characterisation of the physical stability of colloidal polycation-DNA complexes for gene therapy and DNA vaccines. Chem Eng Sci 2001;56:3163-72.
Mount CN, Lee LK, Yasin A, Scott A, Fearn T, Shamlou PA. The influence of physico-chemical and process conditions on the physical stability of plasmid DNA complexes using response surface methodology. Biotechnol Appl Biochem 2003;37(Pt 3):225-34.
Oupicky D, Konak C, Ulbrich K. Preparation of DNA complexes with diblock copolymers of poly[N(2-hydroxypropyl)methacrylamide] and polycations. Mater Sci Eng 1999;C7:59-65.
Overbeek JT, Voorn MJ. Phase separation in polyelectrolyte solutions; theory of complex coacervation. J Cell Physiol 1957;49(Suppl 1):7-22; discussion, 22-6.
Veis A, Aranyi C. Phase separation in polyelectrolyte systems. I. Complex coacervates of gelatin. J Phys Chem 1960;64:1203-10.
Tainaka KI. Study of complex coacervation in low concentration by virial expansion method. I. Salt free systems. J Physical Soc Japan 1979;46:1899-906.