[en] The importance of the spatial variability of antecedent soil moisture conditions on runoff response is widely acknowledged in hillslope hydrology. Using a distributed hydrologic model, this paper aims at investigating the effects of soil moisture spatial variability on runoff in various field conditions and at finding the structure of the soil moisture pattern that approaches the measured soil moisture pattern in terms of field scale runoff. High spatial resolution soil moisture was surveyed in ten different field campaigns using a proximal ground penetrating radar (GPR) mounted on a mobile platform. Based on these soil moisture measurements, seven scenarios of spatial structures of antecedent soil moisture were used and linked with a field scale distributed hydrological model to simulate field scale runoff. Accounting for spatial variability of soil moisture resulted in higher predicted field scale runoff as compared to the case where soil moisture was kept constant. The ranges of possible hydrographs were delineated by the extreme scenarios where soil moisture was directly and inversely modelled according to the topographic wetness index (TWI). These behaviours could be explained by the sizes and relative locations of runoff contributing areas, knowing that runoff was generated by infiltration excess over a certain soil moisture threshold. The most efficient scenario for modeling the within field spatial structure of soil moisture appeared to be when soil moisture is directly arranged according to the TWI, especially when measured soil moisture and TWI were correlated. The novelty of this work is to benefit from a large set of high-resolution soil moisture measurements allowing to model effectively the within field distribution of soil moisture and its impact on the field scale hydrograph. These observations contributed to the current knowledge of the impact of antecedent soil moisture spatial variability on the field scale runoff.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Minet, Julien ; Université Catholique de Louvain - UCL > Earth and Life Institute
Laloy, E.; Université Catholique de Louvain - UCL > Earth and Life Institute
Lambot, S.; Université Catholique de Louvain - UCL > Earth and Life Institute
Vanclooster, M.; Université Catholique de Louvain - UCL > Earth and Life Institute
Language :
English
Title :
Effect of high-resolution spatial soil moisture variability on simulated runoff response using a distributed hydrologic model
Publication date :
2011
Journal title :
Hydrology and Earth System Sciences
ISSN :
1027-5606
eISSN :
1607-7938
Publisher :
European Geophysical Society, Germany
Volume :
15
Pages :
1323-1338
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
HYDRASENS
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24, 43-69, 1979. (Pubitemid 9451768)
Blöschl, G. and Sivapalan, M.: Scale Issues in Hydrological Modeling - A Review, Hydrol. Process., 9, 251-290, 1995. (Pubitemid 26441703)
Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., and Hasenauer, S.: Improving runoff prediction through the assimilation of the ASCAT soil moisture product, Hydrol. Earth Syst. Sci., 14, 1881-1893, doi:10.5194/hess-14-1881-2010, 2010.
Bronstert, A. and Bárdossy, A.: The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale, Hydrol. Earth Syst. Sci., 3, 505-516, doi:10.5194/hess-3-505-1999, 1999. (Pubitemid 30192371)
Capehart, W. J. and Carlson, T. N.: Decoupling of surface and near- surface soil water content: A remote sensing perspective, Water Resour. Res., 33, 1383-1395, 1997.
Castillo, V. M., Gomez-Plaza, A., and Martinez-Mena, M.: The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach, J. Hydrol., 284, 114130, 2003.
Crow, W. T. and Ryu, D.: A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals, Hydrol. Earth Syst. Sci., 13, 1-16, doi:10.5194/hess-13-1-2009, 2009.
Crow, W. T., Wood, E. F., and Dubayah, R.: Potential for downscaling soil moisture maps derived from spaceborne imaging radar data, J. Geophys. Res.-Atmos., 105, 2203-2212, 2000.
Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., and Jackson, T. J.: Field observations ofsoil moisture variability across scales, Water Resour. Res., 44, W01423, doi:10.1029/2006WR005804, 2008. (Pubitemid 351304148)
Gütner, A., Seibert, J., and Uhlenbrook, S.: Modeling spatial patterns of saturated areas: An evaluation of different terrain indices, Water Resour. Res., 40, W05114, doi:10.1029/2003WR002864, 2004.
Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.: Preferred states in spatial soil moisture patterns: Local and nonlocal controls, Water Resour. Res., 33, 2897-2908, 1997. (Pubitemid 27526645)
Green, W. and Ampt, G.: Studies on soil physics: 1, flow of air and water through soils, J. Agr. Sci., 4, 1-24, 1911.
Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., and Goodrich, D. C.: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation, Water Resour. Res., 34, 3405-3420, 1998. (Pubitemid 29032957)
Huisman, J. A., Hubbard, S. S., Redman, J. D., and Annan, A. P.: Measuring soil water content with ground penetrating radar: A review, Vadose Zone J., 2, 476-491, 2003.
Jadoon, K. Z., Lambot, S., Scharnagl, B., van der Kruk, J., Slob, E., and Vereecken, H.: Quantifying field-scale surface soil water content from proximal GPR signal inversion in the time domain, Near Surf. Geophys., 8, 483-491, doi:10.3997/1873- 0604.2010036, 2010.
Kuo, W. L., Steenhuis, T. S., McCulloch, C. E., Mohler, C. L., Weinstein, D. A., DeGloria, S. D., and Swaney, D. P.: Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model, Water Resour. Res., 35, 3419-3428, 1999.
Laloy, E. and Bielders, C. L.: Plot scale continuous modelling of runoff in a maize cropping system with dynamic soil, surface properties, J. Hydrol., 349, 455-169, 2008.
Laloy, E. and Bielders, C. L.: Modelling intercrop management impact on runoff and erosion in a continuous maize cropping system: Part I. Model description, global sensitivity analysis and Bayesian estimation of parameter identifiability, Eur. J. Soil Sci., 60, 1005-1021, 2009.
Laloy, E., Fasbender, D., and Bielders, C. L.: Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach, J. Hydrol., 380, 82-93, 2010.
Lambot, S., Slob, E. C., van den Bosch, I., Stockbroeckx, B., and Vanclooster, M.: Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties, IEEE Trans. Geosci. Remote Sensing, 42, 2555-2568, 2004.
Lambot, S., Weihermüller, L., Huisman, J. A., Vereecken, H., Vanclooster, M., and Slob, E. C.: Analysis of air- launched ground-penetrating radar techniques to measure the soil surface water content, Water Resour. Res., 42, W11403, doi:10.1029/2006WR005097, 2006. (Pubitemid 46134875)
Lambot, S., Binley, A., Slob, E. C., and Hubbard, S.: Ground penetrating radar in hydrogeophysics, Vadose Zone J., 7, 137-139, 2008a. (Pubitemid 351362697)
Lambot, S., Slob, E. C., Chavarro, D., Lubczynski, M., and Vereecken, H.: Measuring soil surface water content in irrigated areas of southern Tunisia using full-waveform inversion of proximal GPR data, Near Surf. Geophys., 6, 403-410, 2008b.
Loew, A. and Mauser, W.: On the disaggregation of passive microwave soil moisture data using a priori knowledge of temporally persistent soil moisture fields, IEEE Trans. Geosci. Remote Sensing, 46, 819-834, doi:10.1109/TGRS.2007. 914800, 2008. (Pubitemid 351324776)
Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11, 431-441, 1963.
Merlin, O., Chehbouni, A., Boulet, G., and Kerr, Y.: Assimilation of disaggregated microwave soil moisture into a hydrologic model using coarse-scale meteorological data, J. Hydrometeorol.,7, 1308-1322, 2006. (Pubitemid 46111238)
Merz, B. and Bardossy, A.: Effect of spatial variability on the rainfall runoff process in a small loess catchment, J. Hydrol., 212, 304-317, 1998. (Pubitemid 29020072)
Merz, B. and Plate, E. J.: An analysis of the effects of spatial varability of soil and soil moisture on runoff, Water Resour. Res., 33, 2909-2922, 1997. (Pubitemid 27526646)
Minet, J., Lambot, S., Slob, E., and Vanclooster, M.: Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers, IEEE Trans. Geosci. Remote Sensing, 48, 1138-1150, doi:10.1109/TGRS. 2009.2031907, 2010.
Minet, J., Wahyudi, A., Bogaert, P., Vanclooster, M., and Lam- bot, S.: Mapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data, Geoderma, 161, 225-237, doi:10.1016/j.geoderma.2010.12.023, 2011.
Noto, L. V., Ivanov, V. Y., Bras, R. L., and Vivoni, E. R.: Effects of initialization on response of a fully-distributed hydrologic model, J. Hydrol., 352, 107-125, 2008.
Pauwels, V. R. N., Hoeben, R., Verhoest, N. E. C., and De Troch, F. P.: The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation, J. Hydrol., 251, 88-102, 2001. (Pubitemid 32731524)
Pellenq, J., Kalma, J., Boulet, G., Saulnier, G., Wooldridge, S., Kerr, Y., and Chehbouni, A.: A disaggregation scheme for soil moisture based on topography and soil depth, J. Hydrol., 276, 112-127, doi:10.1016/S0022-1694(03) 00066-0, 2003. (Pubitemid 36695687)
Quinn, P. F., Beven, K. J., and Lamb, R.: The LN(A/tan-BETA) index - How to calculate it and how to use it within the TOP-MODEL framework, Hydrol. Process., 9, 161-182, 1995. (Pubitemid 26436349)
Rhoades, J. D., Raats, P. A. C., and Prather, R. J.: Effects of liquidphase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity, Soil Sci. Soc. Am. J., 40, 651-655, 1976.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., and Wendroth, O.: Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review, Vadose Zone J., 7, 358-389, 2008. (Pubitemid 351362719)
Savabi, M. and Williams, J.: Water balance and percolation. In: Flanagan, D.C., Nearing, M.A. (Eds.), USDA - Water Erosion Prediction Project: Hillslope profile model documentation (Chapter 5). Nserl report no. 2., Tech. rep., USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana, 1995.
Seibert, J. and McGlynn, B. L.: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models, Water Resour. Res., 43, W04501, doi:10.1029/2006WR005128, 2007. (Pubitemid 46799541)
Serbin, G. and Or, D.: Ground-penetrating radar measurement of crop and surface water content dynamics, Remote Sens. Environ., 96, 119-134, 2005. (Pubitemid 40623231)
Sørensen, R., Zinko, U., and Seibert, J.: On the calculation of the topographic wetness index: evaluation of different methods based on field observations, Hydrol. Earth Syst. Sci., 10, 101-112, doi:10.5194/hess-10-101- 2006, 2006. (Pubitemid 43286044)
Tarboton, D.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33, 309-319, 1997.
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines, Water Resour. Res., 16, 574-582, 1980.
Van Orshoven, J. and Vandenbroucke, D.: Guide de l'utilisateur d'AARDEWERK, base de données pédologiques, Institute for land and water management, K.U. Leuven, Leuven, Belgium, tech. rep., 1993.
Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J., and Vanderborght, J.: Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective, Geophys. Res. Lett., 34, L22402, doi:10.1029/2007GL031813, 2007. (Pubitemid 351222802)
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the value of soil moisture measurements in vadose zone hydrology: A review, Water Resour. Res., 44, W00D06, doi:10.1029/ 2008WR006829, 2008.
Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J. C., Bizzarri, B., Wigneron, J. P., and Kerr, Y.: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications, Nord. Hydrol., 38, 1-20, 2007. (Pubitemid 46210865)
Weihermüller, L., Huisman, J. A., Lambot, S., Herbst, M., and Vereecken, H.: Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques, J. Hydrol., 340, 205-216, 2007. (Pubitemid 46935787)
Western, A., Grayson, R., Blöschl, G., and Wilson, D.: Spatial Variability of Soil Moisture and Its Implications for scaling, chap. 8, 119-142, CRC PRESS, 2003.
Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., and McMahon, T. A.: Observed spatial organization of soil moisture and its relation to terrain indices, Water Resour. Res., 35, 797810, 1999.
Zehe, E. and Blöschl, G.: Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions, Water Resour. Res., 40, W10202, doi:10.1029/2003WR002869, 2004. (Pubitemid 39568795)
Zehe, E., Becker, R., Bardossy, A., and Plate, E.: Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation, J. Hydrol., 315, 183-202, 2005. (Pubitemid 41719072)
Zehe, E., Graeff, T., Morgner, M., Bauer, A., and Bronstert, A.: Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains, Hydrol. Earth Syst. Sci., 14, 873-889, doi:10.5194/hess-14-873-2010, 2010.
Zinn, B. and Harvey, C. F.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields, Water Resour. Res., 39, 1051, doi:10.1029/2001WR001146, 2003.