[en] In this paper, we present a general consistent numerical formulation able to take into account strain rate and thermal effects of the material behavior. A thermomechanical implicit approach for element erosion to model material failure is also presented. The numerical model will be illustrated by applications both from the metal forming and the impact domain. All these physical phenomena have been included in an implicit dynamic oriented object finite element code (implemented at LTAS-MN²L, University of Liège, Belgium) named Metafor
Disciplines :
Materials science & engineering
Author, co-author :
Jeunechamps, Pierre-Paul
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Implicit 2D Numerical Simulation of Materials Submitetd to High Strain Rates including Fracture
Publication date :
2013
Journal title :
Key Engineering Materials
ISSN :
1013-9826
eISSN :
1662-9795
Publisher :
Trans Tech Publications, Aedermannsdorf, Switzerland
Volume :
535-536
Pages :
80-84
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Walloon Region under grant First Objectif 3- IMPAMETA, N° 215275
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.