[en] Over the last decades, polymer micelles have attracted an increasing interest in drug pharmaceutical research because they could be used as efficient drug delivery systems.
The goal of this thesis was centered on the design of new smart nanocarriers and more particularly on the basis of reversibly redox-cross-linked polymer micelles. The first part of that work was dedicated to the synthesis of new macromolecular architectures associating biodegradable hydrophobic polymers such as polyester (e.g. PCL), polycarbonate (e.g. PTMC) or also polyphosphate (e.g. PBODOP) and the water soluble poly(ethylene oxide) (PEO) frequently used due to its biocompatible properties. Well-defined block copolymers have been synthesized by ring-opening polymerization.
The second part of that work focused on the cross-linking of the hydrophobic block in order to obtain well stabilized micelles. The copolymerization of α-chloro-ε-caprolactone (αClεCL) allows to easy functionalize the hydrophobic block in order to reversibly cross-link the future micelle core by the addition of a disulfide bearing cross-linker. The self assembly of theses copolymers and redox-dependent micellization behaviours have been studied by diffusion light scattering and transmission electronic microscopy.
Finally, the potential of these redox-sensitive micelles as active drug delivery system has been analysed by investigating their stealthy behaviours using the complement activation (CH50) test, their cytotoxicity, their cellular internalization and also the redox-sensitive profile of a hydrophobic dye.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry
Author, co-author :
Cajot, Sébastien ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Tailor-made degradable copolymers for the design of advanced drug delivery systems
Alternative titles :
[fr] Copolymères biodégradables sur mesure pour la conception de systèmes avancés d'administration des médicaments
Defense date :
29 August 2012
Institution :
ULiège - Université de Liège
Degree :
Docteur en sciences
Promotor :
Jérôme, Christine ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.