Abstract :
[en] The objective of this study was to estimate the genetic relationships between days open (DO) and both milk production traits and fatty acid (FA) content in milk predicted by mid-infrared spectrometry. The edited data set included 143,332 FA and production test-day records and 29,792 DO records from 29,792 cows in 1,170 herds. (Co)variances were estimated using a series of 2-trait models that included a random regression for milk production and FA traits. In contrast to the genetic correlations with fat content, those between DO and FA content in milk changed considerably over the lactation. The genetic correlations with DO for unsaturated FA, monounsaturated FA, long-chain FA, C18:0, and C18:1 cis-9 were positive in early lactation but negative after 100 d in milk. For the other FA, genetic correlations with DO were negative across the whole lactation. At 5 d in milk, the genetic correlation between DO and C18:1 cis-9 was 0.39, whereas the genetic correlations between DO and C6:0 to C16:0 FA ranged from -0.37 to -0.23. These results substantiated the known relationship between fertility and energy balance status, explained by the release of long-chain FA in early lactation, from the mobilization of body fat reserves, and the consequent inhibition of de novo FA synthesis in the mammary gland. At 200 d in milk, the genetic correlations between DO and FA content ranged from -0.38 for C18:1 cis-9 to -0.03 for C6:0. This research indicates an opportunity to use FA content in milk as an indicator trait to supplement the prediction of genetic merit for fertility.
Scopus citations®
without self-citations
20