Paper published in a book (Scientific congresses and symposiums)
FACTS devices controlled by means of reinforcement learning algorithms
Ernst, Damien; Wehenkel, Louis
2002In Proceedings of the 14th Power Systems Computation Conference (PSCC 2002)
Peer reviewed
 

Files


Full Text
ernst-rl.pdf
Publisher postprint (135.53 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
FACTS; reinforcement learning; power system oscillations; discrete time optimal control; adaptive control
Abstract :
[en] Reinforcement learning consists of a collection of methods for approximating solutions to deterministic and stochastic optimal control problems of unknown dynamics. These methods learn by experience how to adjust a closed-loop control rule which is a mapping from the system states to control actions. This paper proposes an application of reinforcement learning methods to the control of a FACTS device aimed to damp power system oscillations. A detailed case study is carried out on a synthetic four-machine power system.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
FACTS devices controlled by means of reinforcement learning algorithms
Publication date :
2002
Event name :
14th Power Systems Computation Conference (PSCC 2002)
Event place :
Sevilla, Spain
Event date :
June 22-24, 2002
Audience :
International
Main work title :
Proceedings of the 14th Power Systems Computation Conference (PSCC 2002)
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 26 May 2009

Statistics


Number of views
80 (1 by ULiège)
Number of downloads
88 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi