[en] Penicillium canescens 10-10c strain was cultivated on barley straw hydrolysate as a soluble nutrient source and as inducer for xylanase production. Barley straw hydrolysate was obtained by treatment of barley straw with NaOH or hot water. In shake flask cultures, NaOH treatment was found to increase the biomass production, but was not accompanied by an increase in xylanase production. The best xylanase production (54 U/ml) was observed on hydrolyzed extract from barley straw treated with hot water (100 ºC) for 3 hours. Enzyme production was further improved by scaling up the cultivation process to a 3-L stirred tank bioreactor. For batch cultivations in the bioreactor, the maximum xylanase productivity reached 1.31 and 0.46 U/ml/h, respectively, after 96 and 168 hours of cultivation. However, xylanase productivity reached 3.46 U/ml/h in the continuous culture. These results suggest that xylanase can be produced efficiently by Penicillium canescens 10-10c in continuous culture from an inexpensive source such as barley straw hydrolysate.
Disciplines :
Biotechnology
Author, co-author :
Bakri, Y.
Akeed, Y.
Thonart, Philippe ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Language :
English
Title :
COMPARISON BETWEEN CONTINUOUS AND BATCH PROCESSING TO PRODUCE XYLANASE BY Penicillium canescens 10-10c
Publication date :
2012
Journal title :
Brazilian Journal of Chemical Engineering
ISSN :
0104-6632
eISSN :
1678-4383
Publisher :
Brazilian Society of Chemical Engineering, Sao Polo, Brazil
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abril, D., Meduna, M. and Abril, A., Sugar cane bagasse prehydrolysis using hot water. Brazilian Journal of Chemical Engineering, 29, pp. 31-38 (2012).
Assamoi, A. A., Delvigne, F., Aldric J. M., Destain, J. and Thonart, P., Improvement of xylanase production by Penicillium canescens 10-10c in solid state fermentation. Biotechnology, Agronomy, Society and Environment, 12, 111-118 (2008).
Bailey, M. J., Biely, P. and Poutanen, K., Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, pp. 257-270 (1992).
Bakri, Y., Jacques, P., Shi, L. K. and Thonart, P., Influence of a new axial impeller on K La and xylanase production by Penicillium canescens 10-10c. Applied Biochemistry and Biotechnology, 98/100, pp. 1037-1048 (2002).
Bakri, Y., Jacques, P. and Thonart, P., Xylanase production by Penicillium canescens 10-10c in solid state fermentation. Applied Biochemistry and Biotechnology, 105/108, pp. 737-748 (2003).
Baptista-Neto, A., Teodoro, J. C., Filho, L. C. M. C., Badino, A. C. and Hokka, C. O., Comparisons between continuous and batch processing to produce clavulanic acid by Streptomyces clavuligerus. Brazilian Archives of Biology and Technology, 48, pp. 97-104 (2005).
Biely, P., Biochemical aspects of the production of microbial hemicellulases. pp. 29-51. In: Coughlan, M. P. and Hazlewood, G. P., (Eds.) Hemicellulose and Hemicellulases. Portland Press, London (1993).
Da-Costa, A. C., Lima, E. L. and Alves, T. L. M., Start-up strategy for continuous bioreactors. Brazilian Journal of Chemical Engineering, 14, pp. 167-177 (1997).
Deejing, S. and Ketkorn, W., Comparison of hydrolysis conditions to recover reducing sugar from various lignocellulosic materials. Chiang Mai Journal of Science, 36, 384-394 (2009).
Dominguez, A., Deive, F. J., Pastrana, L., Rúa, M. L., Longo, M. A. and Sanroman, M. A., Thermostable lipolytic enzymes production in batch and continuous cultures of Thermophilus HB27. Bioprocess and Biosystems Engineering, 33, pp. 347-354 (2009).
Fencl, Z. and Pazlarová, J., Production of extracellular enzymes in continuous culture. Folia Microbiologica, 27, pp. 340-349 (1982).
Gaspar, A., Cosson, T., Roques, C. and Thonart, P., Study on the production of a xylanolytic complex from Penicillium canescens 10-10c. Applied Biochemistry and Biotechnology, 67, pp. 57-70 (1997).
Gaspar, A., Strodiot, L. and Thonart, P., Improvement of oxygen transfer coefficient during Penicillium canescens culture: Influence of turbine design, agitation speed, and air flow rate on xylanase production. Applied Biochemistry and Biotech., 70/72, pp. 535-545 (1998).
Guimarães, L. H. S., Nogueira, S. C. P., Michelin, M., Rizzatti, A. C. S., Sandrim, V. C., Zanoelo, F. F., Aquino, A. C. M. M., Junior, A. B. and Polizeli, M. L. T. M., Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazilian Journal of Microbiology, 37, pp. 474-480 (2006).
Kim, K. H., Tucker, M. P. and Nguyen, Q. A., Effects of operating parameters on countercurrent extraction of hemicellulosic sugars from pretreated softwood. Applied Biochemistry and Biotechnology, 98/100, pp. 147-159 (2002).
Kim, D. Y., Yim, S. C., Lee, P. C., Lee, W. G., Lee, S. Y. and Chang, H. N., Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology, 35, pp. 648-653 (2004).
Lavarack, B. P., Griffin, G. J. and Rodman, D., The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 23, pp. 367-380 (2002).
Lo, C. M., Zhang, Q., Callow, N. V. and Ju, L. K., Cellulase production by continuous of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction. Bioresource Technology, 101, pp. 717-723 (2010).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, pp. 265-275 (1951).
Medel, P., Baucells, F., Gracia, M. I., De Blas, C. and Mateos, G. G., Processing of barley and enzyme supplementation in diets for young pigs. Animal Feed Science and Technology, 95, pp. 113-122 (2002).
Miller, G. L., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, pp. 426-428 (1959).
Neto, A. B., Hirata, D. B., Cassiano Filho, L. C. M., Bellão, C., Badino Júnior, A. C., Hokka, C. O. A., A study on clavulanic acid production by Streptomyces clavuligerus in batch, fed-batch and continuous processes. Brazilian Journal of Chemical Engineering, 22, pp. 557-563 (2005).
Palma, M. B., Milagres, A. M. F., Prata, A. M. R. and Mancilha, I. M., Influence of agitation and agitation on the xylanase activity from Penicillium janthinellum. Process Biochemistry, 31, pp. 141-145 (1996).
Perssoa Jr. A., Mancilha, I. M. and Sato, S., Acid hydrolysis of hemicellulose from sugarcane bagasse. Brazilian Journal of Chemical Engineering, 14, (3), pp. 291-297 (1997)
Romanowska, I., Polak, J., Jonowska, K. and Bielecki, S., The application of fungal endoxylanase in bread-making. Communications in Agricultural and Applied Biological Sciences, 68, pp. 317-320 (2003).
Rothlisberger, P., Fiechter, A. and Switzerland, W., Produation of thermostable xylanases in batch and continuous culture by Thermomonospora fusca KW3. Applied Microbiology and Biotechnology, 37, pp. 416-419 (1992).
Sunna, A. and Antranikian, G., Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, pp. 39-67 (1997).
Sun, R. C., Tomkinson, J., Wang, Y. X. and Xiao, B., Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer, 41, pp. 2647-2656 (2000).
Tangnu, S. K., Blanch, H. W., Wilke, C. R., Production of xylanase by Streptomyces xylophagus nov. sp. Acta Biotechnologica, 1, pp. 31-40 (1981).
Wong, K. K. Y., James, C. S. and Campion, S. H., Xylanase pre-and post-treatments of bleached pulps decrease absorption coefficient. Journal of Pulp and Paper Science, 26, pp. 377-383 (2000).
Viegas, M. C., Andrietta, S. R. and Andrietta, M. G. S., Use of tower reactors for continuous ethanol production. Brazilian Journal of Chemical Engineering, 19, pp. 167-173 (2002).
Xiong, H., Von Weymarn, N., Turunen, O., Leisola, M., Pastinen, O., Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresource Technology, 96, pp. 753-759 (2005).
Zangirolami, T. C., Carlsen, M., Nielsen, J. and Jørgensen, S. B., Growth and enzyme production during continuous cultrures of a high amylase producing variant of Aspergillus oryzae. Brazilian Journal of Chemical Engineering, 19, pp. 55-68 (2002).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.