AFM; Force spectroscopy; Multivalent; Polymer; Polymer architecture; Radical polymerization
Abstract :
[en] Well-defined poly(vinyl acetate) (PVAc) chains prepared by CMRP (cobalt-mediated radical polymerization) were coupled using an alkyne-functional nitrone via NMRC (nitrone-mediated radical coupling).1 In all the cases, the coupling efficiencies were close to 90% or higher. The polymers mid-chain functionalized with an alkyne group were then reacted with azide-functionalized atomic force microscopy (AFM) tips via copper-catalyzed azide-alkyne cycloaddition (CuAAC). As a result, polymers having a double-branch architecture were linked to AFM tips via a short linker. The structure and the molecular parameters of the polymers were determined by NMR and GPC, whereas the ‘click’ step onto AFM tips was assessed by performing the same CuAAC reaction onto macroscopic surfaces and characterizing them by ATR FT-IR.
The adhesive properties of these double-branched polymers were studied by AFM single-molecule force spectroscopy. By performing approach-retraction cycles in solution upon a glass surface, the interaction between single PVAc chains and the surface was investigated. The effect of the double-branch architecture on the adhesion forces was under focus. Setting a residence time of the tip on the surface before retraction was found to have a beneficial influence on the adhesion forces. Signs of multiple interactions acting in parallel were detected in the experimental force-distance traces.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.