Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Bullinger, Eric ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Méth. computat. pour la bio.syst.
Sauter, T.
Allgöwer, F.
Gilles, E. D.
Language :
English
Title :
On Deriving a Hybrid Model for Carbohydrate Uptake in Escherichia Coli
Ederer, M. (2001). Gliederung des zellulären Metabolismus in Funktionseinheiten mittels mathematischer Methoden. Master's thesis. Universität Stuttgart.
Fussenegger, M., J. E. Bailey and J. Varner (2000). A mathematical model of caspase function in apoptosis. Nat. Biotechnol. 18(7), 768-774.
Grünenfelder, B., G. Rummel, J. Vohradsky, D. Röder, H. Langen and U. Jenal (2001). Proteomics analysis of the bacterial cell cycle. Proc. Nat. Acad. Sci. USA 98(8), 4681-86.
Hood, L. (2001). Computing life: The challenges ahead. IEEE Engineering in Medicine and Biology Magazine 20(4), 20.
Keener, J. and J. Sneyd (2001). Mathematical Physiology. Vol. 8 of Interdisciplinary Applied Mathematics. second ed. Springer-Verlag. New York.
Ko, Y.-F., W.E. Bentley and W.A. Weigand (1994). A metabolic model of cellular energetics and carbon flux during aerobic Escherichia coli fermentation. Biotech. Bioeng. 43, 847-55.
Kremling, A., K. Bettenbrock, B. Laube, K. Jahreis, J.W. Lengeler and E.D. Gilles (2001). The organisation of metabolic reaction networks: III. Application for diauxic growth on glucose and lactose. Metabol. Eng. 3(4), 362-379. Accepted.
Kremling, A., K. Jahreis, J.W. Lengeler and E.D. Gilles (2000). The organization of metabolic reaction networks: II. A signal-oriented approach to cellular models. Metabol. Eng. 2(3), 190-200.
Lee, S.B. und J.E. Bailey (1984). Genetically structured modells for lac promoter-operator function in the Escherichia coli chromosome and in multicopy plasmids: lac operator function. Biotech. & Bioeng. 26, 1372-82.
Lengeler, J.W., Schlegel, H.G. and Drews, G., Eds. (1999). Biology of the Prokaryotes. Thieme Verlag, Stuttgart, Blackwell Science Inc., Oxford.
Rizzi, M., M. Baltes, U. Theobald and M. Reuss (1997). In vivo analysis of metabolic dynamics in saccharomyces cerevisiae: II. mathematical model. Biotech. & Bioeng. 55, 592-608.
Rizzi, M., U. Theobald, M. Baltes and M. Reuss (1993). Bioreactor and bioprocess fluid dynamics. In: Measurements and Modelling of the dynamic glucose response of Saccharomyces cerevisiae in the time window of mixing times (A.W. Nienow, Ed.). pp. 401-12. Mechanical Engineering Publications Ltd. London.
Schöberl, B., C. Eichler-Jonsson, E.D. Gilles and G. Müller (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. Accepted.
Shu, J. and M.L. Shuler (1989). A mathematical model for the growth of a single cell of E. coli on a glucose/glutamine/ammonium medium. Biotech. & Bioeng. 33, 1117-26.
Spiro, P.A., J.S. Parkinson and H.G. Othmer (1997). A model of excitation and adaptation in bacterial Chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263-7268.
Stelling, J. and E.D. Gilles (2000). Modular mathematical modeling of complex regulatory networks: Application to cell cycle regulation in saccharomyces cerevisiae. In: Proceedings of the 4th Congress in Biochemical Engineering, Stuttgart, Germany. Fraunhofer IRB Verlag, pp. 43-47.
van der Schaft, Arjan (2000). An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences. Springer. London.
Varma, A., B. Boesch and B. Palsson (1993). Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Env. Microbiol. 59, 2465-73.
Wang, J. (2001). A Systematic Modeling Approach for Cellular Systems and its Application on Transport and Catabolism of Four Carbohydrates in Escherichia coli. PhD thesis. Universität Stuttgart.
Xu, B., M. Jahic and S.-O. Enfors (1999). Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol. Prog. 15, 81-90.