Article (Scientific journals)
Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning
Defourny, Boris; Ernst, Damien; Wehenkel, Louis
2013In INFORMS Journal on Computing, 25 (3), p. 488-501
Peer Reviewed verified by ORBi
 

Files


Full Text
2013-informs.pdf
Publisher postprint (288.77 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Stochastic Programming; Machine Learning
Abstract :
[en] In the context of multistage stochastic optimization problems, we propose a hybrid strategy for generalizing to nonlinear decision rules, using machine learning, a finite data set of constrained vector-valued recourse decisions optimized using scenario-tree techniques from multistage stochastic programming. The decision rules are based on a statistical model inferred from a given scenario-tree solution and are selected by out-of-sample simulation given the true problem. Because the learned rules depend on the given scenario tree, we repeat the procedure for a large number of randomly generated scenario trees and then select the best solution (policy) found for the true problem. The scheme leads to an ex post selection of the scenario tree itself. Numerical tests evaluate the dependence of the approach on the machine learning aspects and show cases where one can obtain near-optimal solutions, starting with a “weak” scenario-tree generator that randomizes the branching structure of the trees.
Disciplines :
Computer science
Author, co-author :
Defourny, Boris;  Princeton University > Department of Operations Research and Financial Engineering
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning
Publication date :
2013
Journal title :
INFORMS Journal on Computing
ISSN :
1091-9856
eISSN :
1526-5528
Publisher :
INFORMS: Institute for Operations Research
Volume :
25
Issue :
3
Pages :
488-501
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 15 September 2012

Statistics


Number of views
276 (28 by ULiège)
Number of downloads
297 (10 by ULiège)

Scopus citations®
 
15
Scopus citations®
without self-citations
13
OpenCitations
 
13
OpenAlex citations
 
24

Bibliography


Similar publications



Contact ORBi