Valasek, J. (1920) Piezoelectric and allied phenomena in rochelle salt. Am. Phys. Soc., 15, 537.
Valasek, J. (1921) Piezo-electric and allied phenomena in rochelle salt. Phys. Rev., 17, 475-481.
Scott, J.F. (2000) Ferroelectric Memories, Springer Series in Advanced Microelectronics, Springer, Berlin, pp. 1-132.
Tsymbal, E.Y. and Kohlstedt, H. (2006) Tunneling across a ferroelectric. Science, 313, 181-183.
Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A., and Kalinin, S.V. (2009) Polarization control of electron tunneling into ferroelectric surfaces. Science, 324, 1421.
García, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N., Barthelemy, A., and Bibes, M. (2009) Giant tunnel electroresistance for nondestructive readout of ferroelectric states. Nature, 460, 81-84.
Garćia, V., Bibes,M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranolt, C., Mathur, N., Fusil, S., Bouzehouane, K., and Barthelemy, A. (2010) Ferroelectric control of spin polarization. Science, 327, 1106.
Kohlstedt, H., Pertsev, N.A., Contreras, J.R., and Waser, R. (2005) Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B, 72, 125341.
Spaldin, N.A. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 175-218.
Shin, Y.H., Grinberg, I., Chen, I.W., and Rappe, A.M. (2007) Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature, 449, 881-884.
Highland, M.J., Fister, T.T., Richard, M.I., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., and Stephenson, G.B. (2010) Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3. Phys. Rev. Lett., 105, 167601.
Koval, S., Lasave, J., Migoni, R.L., Kohanoff, J., and Dalal, N.S. (2011) Ab Initio Studies of H-Bonded Systems: The Cases of Ferroelectric KH2PO4 and Antiferroelectric NH4H2PO4, Ferroelectrics -Characterization and Modeling, Mickaël Lallart (Ed.), ISBN: 978-953-307-455-9, InTech, Available from: http://www.intechopen.com/articles/ show/title/ab-initio-studies-of-h-bondedsystems-the-cases-of-ferroelectr ickh2po4-and-antiferroelectric-nh4h2p.
Nalwa, H.S. (1995) Ferroelectric Polymers: Chemistry, Physics and Applications, Marcel Dekker, New York.
Lines, M.E. and Glass, A.M. (1977) Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford.
Strukov, B.A. and Levanyuk, A.P. (1998) Ferroelectric Phenomena in Crystals, Springer, Berlin.
Rabe, K.M., Dawber, M., Lichtensteiger, C., Ahn, C.H., and Trisone, J.M. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 1-30.
Devonshire, A.F. (1949) Theory of barium titanate. Part I. Phil. Mag., 40, 1040-1063.
Devonshire, A.F. (1951) Theory of barium titanate. Part II. Phil. Mag., 42, 1065-1079.
Íñiguez, J., Ivantchev, S., Perez-Mato, J. M., and García, A. (2001) Devonshire-Landau free energy of BaTiO3 from first-principles. Phys. Rev. B, 63, 144103.
Geneste, G. (2009) Landau free energy of ferroelectric crystals by thermodynamic integration. Phys. Rev. B, 79, 064101.
Chandra, P. and Littlewood, P.B. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 69-116.
Martin, R.M. (2004) Electronic Structure. Basic Theory and Practical Methods, Cambridge University Press, Cambridge.
Kohanoff, J. (2006) Electronic Structure Calculations for Solids and Molecules, Cambridge University Press, Cambridge.
Martin, R.M. (1974) Comment on calculations of electric polarization in crystals. Phys. Rev. B, 9, 1998-1999.
King-Smith, R.D. and Vanderbilt, D. (1993) Theory of polarization of crystalline solids. Phys. Rev. B, 47, 1651-1654.
Resta, R. (1992) Theory of the electric polarization in crystals. Ferroelectrics, 136, 51-55.
Resta, R. (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys., 66, 899.
Resta, R. and Vanderbilt, D. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 31-68.
Resta, R. (2010) Electrical polarization and orbital magnetization: the modern theories. J. Phys.: Condens. Matter, 22, 123201.
Souza, I., Íñiguez, J., and Vanderbilt, D. (2002) First-principles approach to insulators in finite electric fields. Phys. Rev. Lett., 89, 117602.
Umari, P. and Pasquarello, A. (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett., 89, 157602.
Dieguez, O. and Vanderbilt, D. (2006) First-principles calculations for insulators at constant polarization. Phys. Rev. Lett., 96, 056401.
Stengel, M., Spaldin, N.A., and Vanderbilt, D. (2009) Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys., 5, 304-308.
Lines, M.E. (1969) Statistical theory for displacement ferroelectrics. Phys. Rev., 177, 797-812.
Zhong, W., Vanderbilt, D., and Rabe, K.M. (1994) Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett., 73, 1861-1864.
Zhong, W., Vanderbilt, D., and Rabe, K.M. (1995) First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Phys. Rev. B, 52, 6301-6312.
Sepliarsky, M., Asthagiri, A., Phillpot, S. R., Stachiotti, M.G., and Migoni, R.L. (2005) Atomic-level simulation of ferroelectricity in oxide materials. Curr. Opin. Solid State Mater. Sci., 9, 107-113.
Sepliarsky,M., Phillpot, S.R.,Wolf, D., Stachiotti,M.G., and Migoni, R.L. (2004) Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl. Phys. Lett., 76, 3986-3988.
Sepliarsky, M., Stachiotti, M.G., and Migoni, R.L. (2005) Surface reconstruction and ferroelectricity in PbTiO3 thin films. Phys. Rev. B, 72, 014110.
Sepliarsky, M., Stachiotti, M.G., and Migoni, R.L. (2006) Interface effects in ferroelectric PbTiO3 ultrathin films on a paraelectric substrate. Phys. Rev. Lett., 96, 137603.
Stachiotti, M.G. and Sepliarsky, M. (2011) Toroidal ferroelectricity in PbTiO3 nanoparticles. Phys. Rev. Lett., 106, 137601.
Tinte, S., Stachiotti, M.G., Phillpot, S. R., Sepliarsky, M., Wolf, D., and Migoni, R.L. (2004) Ferroelectric properties of BaxSr1-xTiO3 solid solutions obtained by molecular dynamics simulations. J. Phys.: Condens. Matter, 16, 3495-3506.
Tinte, S. and Stachiotti, M.G. (2001) Surface effects and ferroelectric phase transitions in BaTiO3 ultrathin films. Phys. Rev. B, 64, 235403.
Cochran, W. (1960) Crystal stability and the theory of ferroelectricity. Adv. Phys., 9, 387-423.
Cohen, R.E. (1992) Origin of ferroelectricity in perovskite oxides. Nature, 358, 136-138.
Posternak, M., Resta, R., and Baldereschi, A. (1994) Role of covalent bonding in the polarization of perovskite oxides: the case of KNbO3. Phys. Rev. B, 50, 8911-8914.
Harrison, W.A. (1980) Electronic Structure and the Properties of Solids, W. H. Freeman and Co., San Francisco.
Ghosez, P., Gonze, X., and Michenaud, J.P. (1998) Dynamical atomic charges: the case of ABO3 compounds. Phys. Rev. B, 58, 6224-6240.
Zhong, W., King-Smith, R.D., and Vanderbilt, D. (1994) Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett., 72, 3618-3621.
Resta, R. (1999) Dynamical charges in oxides: recent advances. J. Phys. Chem. Solids, 61, 153.
Shirane, G., Axe, J., Harada, J., and Remeika, J. (1970) Soft ferroelectric modes in lead titanate. Phys Rev B, 2, 155-159.
Ghosez, P., Gonze, X., Lambin, P., and Michenaud, J.P. (1995) Born effective charges of bariumtitanate: band-by-band decomposition and sensitivity to structural features. Phys. Rev. B, 51, 6765.
Ghosez, P. and Gonze, X. (2000) Bandby-band decomposition of the Born effective charges. J. Phys.: Condens. Matter, 12, 9179-9188.
Ghosez, P., Gonze, X., and Michenaud, J.P. (1996) Coulomb interaction and ferroelectric instability of BaTiO3. Europhys. Lett., 33, 713-718.
Slater, J.C. (1950) The Lorentz correction in barium titanate. Phys. Rev., 78, 748-761.
Harada, J., Axe, J.D., and Shirane, G. (1971) Neutron-scattering study of soft modes in cubic BaTiO3. Phys. Rev. B, 4, 155.
Hill, N.A. (2000) Why are there so few magnetic ferroelectrics? J. Phys. Chem. B, 104, 6694-6709.
Geneste, G., Bousquet, E., and Ghosez, P. (2008) New insights into the concept of ferroelectric correlation volume. J. Comput. Theor. Nanosci., 5, 1-4.
Ghosez, P. and Junquera, J. (2006) Handbook of Theoretical and Computational Nanotechnology, vol. 9, American Scientific Publishers, Stevenson Ranch, CA, pp. 623-728.
Rabe, K.M. and Ghosez, P. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 117-174.
Lichtensteiger, C., Dawber, M., and Triscone, J.M. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 305-338.
Dawber, M., Rabe, K.M., and Scott, J.F. (2005) Physics of thin-film ferroelectric oxides. Rev. Mod. Phys., 77, 1083-1130.
Rabe, K.M. (2005) Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices. Curr. Opin. Solid State Mater. Sci., 9, 122-127.
Ponomareva, I., Naumov, I., Kornev, I., Fu, H., and Bellaiche, L. (2005) Modelling of nanoscale ferroelectrics from atomistic simulations. Curr. Opin. Solid State Mater. Sci., 9, 114-121.
Duan, W. and Liu, Z.R. (2006) Theoretical modeling and simulations of perovskite ferroelectrics: from phenomenological approaches to ab initio. Curr. Opin. Solid State Mater. Sci., 10, 40-51.
Scott, J.F. (2006) Nanoferroelectrics: statics and dynamics. J. Phys.: Condens. Matter, 18, R361-R386.
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S. (2006) Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys., 100, 051606.
Junquera, J. and Ghosez, P. (2008) First-principles study of ferroelectric oxide epitaxial thin films and superlattices: the role of the mechanical and electrical boundary conditions. J. Comput. Theor. Nanosci., 5, 2071-2088.
Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., and Triscone, J.M. (2011) Interface physics on complex oxide heterostructures. Annu. Rev. Condens. Matter Phys., 2, 141-165.
Rondinelli, J.M. and Spaldin, N.A. (2011) Structure and properties of functional oxide thin films: insights from electronic structure calculations, http://arxiv.org/abs/1103.4418.
Dieguez, O. and Vanderbilt, D. (2008) First-principles modeling of strain in perovskite ferroelectric thin films. Phase Transit., 81, 607-622.
Pertsev, N.A., Zembilgotov, A.G., and Tagantsev, A.K. (1998) Effects of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett., 80, 1988-1991.
Pertsev, N.A., Zembilgotov, A.G., and Tagantsev, A.K. (1999) Effects of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Ferroelectrics, 223, 79.
Choi, K.J., Biegaslki, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.Q., Schlom, D.G., and Eom, C.B. (2004) Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 306, 1005-1009.
Pertsev, N.A., Tagantsev, A.K., and Setter, N. (2000) Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B, 61, R825-R829.
Pertsev, N.A., Tagantsev, A.K., and Setter, N. (2002) Erratum: phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B, 65, 219901(E).
Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., and Schlom, D.G. (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature, 430, 758-761.
Pertsev, N.A., Kukhar, V.G., Kohlstedt, H., and Waser, R. (2003) Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1xTix)O3 thin films. Phys. Rev. B, 67, 054107.
Dieguez, O., Tinte, S., Antons, A., Bungaro, C., Neaton, J.B., Rabe, K.M., and Vanderbilt, D. (2004) Ab initio study of the phase diagram of epitaxial BaTiO3. Phys. Rev. B, 69, 212101.
Bungaro, C. and Rabe, K.M. (2004) Epitaxially strained [001]-(PbTiO3)1/ (PbZrO3)1 superlattice and PbTiO3 from first principles. Phys. Rev. B, 69, 184101.
Antons, A., Neaton, J.B., Rabe, K.M., and Vanderbilt, D. (2005) Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles. Phys. Rev. B, 71, 024102.
Dieguez, O., Rabe, K.M., and Vanderbilt, D. (2005) First-principles study of epitaxial strain in perovskites. Phys. Rev. B, 72, 144101.
Bousquet, E., Spaldin, N., and Ghosez, P. (2010) Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett., 104, 037601.
Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R. (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science, 326, 977-980.
Hatt, A.J., Spaldin, N.A., and Ederer, C. (2010) Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B, 81, 054109.
Bea, H., Dupe, B., Fusil, S., Mattana, R., Jacquet, E., Warot-Fonrose, B., Wilhelm, F., Rogalev, A., Petit, S., Cros, V., Anane, A., Petroff, F., Bouzehouane, K., Geneste, G., Dkhil, B., Lisenkov, S., Ponomareva, I., Bellaiche, L., Bibes, M., and Barthelemy, A. (2009) Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett., 102, 217603.
Wojde", J.C. and Íñiguez, J. (2010) Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett., 105, 037208.
Fennie, C.J. and Rabe, K.M. (2006) Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett., 97, 267602.
Lee, J.H. and Rabe, K.M. (2010) Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett., 104, 207204.
Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Kourkoutis, L.F., Kim, J.W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., and Schlom, D.G. (2010) A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature, 466, 954-959.
Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., and Scott, J.F. (2007) Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett., 99, 167601.
Catalan, G., Sinnamon, L., and Gregg, J. (2004) The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys.: Condens. Matter, 16, 2253-2264.
Catalan, G., Noheda, B., McAneney, J., Sinnamon, L., and Gregg, J. (2005) Strain gradients in epitaxial ferroelectrics. Phys. Rev. B, 72, 020102.
Kogan, S.M. (1964) Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Physics -Solid State, 5, 2069.
Cross, L.E. (2006) Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci., 41, 53-63.
Resta, R. (2010) Towards a bulk theory of flexoelectricity. Phys. Rev. Lett., 105, 127601.
Hong, J., Catalan, G., Scott, J.F., and Artacho, E. (2010) The flexoelectricity of barium and strontium titanate from first-principles. J. Phys.: Condens. Matter, 22, 112201.
Tagantsev, A.K. (1986) Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B, 34, 5883-5889.
Tagantsev, A.K., (1991) Electric polarization in crystals and its response to thermal and elastic perturbation. Phase Transitions, 35, 119.
Nagarajan, V., Prasertchoung, S., Zhao, T., Zheng, H., Ouyang, J., Ramesh, R., Tian, W., Pan, X.Q., Kim, D.M., Eom, C.B., Kohlstedt, H., and Waser, R. (2004) Size effects in ultrathin epitaxial ferroelectric heterostructures. Appl. Phys. Lett., 84, 5225-5227.
Lichtensteiger, C., Triscone, J.M., Junquera, J., and Ghosez, P. (2005) Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett., 94, 047603.
Jo, J.Y., Kim, Y.S., Kim, D.H., Kim, J. D., Chang, Y.J., Kong, J.H., Park, Y.D., Song, T.K., Yoon, J.G., Jung, J.S., and Noh, T.W. (2005) Thickness-dependent ferroelectric properties in fully-strained SrRuO3/BaTiO3/SrRuO3 ultra-thin capacitors. Thin Solid Films, 486, 149-152.
Kim, D.J., Yo, J.Y., Chang, Y.J., Chee, J.S., Yoon, J.G., Song, T.K., and Noh, T.W. (2005) Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett., 92, 237602.
van Helvoort, A.T.J., Dahl, O., Soleim, B.G., Holmestad, R., and Tybell, T. (2005) Imaging of out-of-plane interfacial strain in epitaxial PbTiO3/ SrTiO3 thin films. Appl. Phys. Lett., 86, 092907.
Junquera, J. and Ghosez, P. (2003) Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 422, 506-509.
Nagarajan, V., Junquera, J., He, J.Q., Jia, C.L., Lee, K., Kim, Y.K., Zhao, T., Ghosez, P., Rabe, K.M., Baik, S., Waser, R., and Ramesh, R. (2006) Scaling of structure and electrical properties in ultra-thin epitaxial ferroelectric heterostructures. J. Appl. Phys., 100, 051609.
Vendik, O.G. and Zubko, S.P. (2000) Ferroelectric phase transition and maximum dielectric permittivity of displacement type ferroelectrics (BaxSr1xTiO3). J. Appl. Phys., 88, 5343-5350.
Lookman, A., Bowman, R.M., Gregg, J.M., Kut, J., Ríos, S., Dawber, M., Ruediger, A., and Scott, J.F. (2004) Thickness independence of true phase transition temperatures in barium strontium titanate films. J. Appl. Phys., 96, 555-562.
Kim, D.J., Jo, J.Y., Kim, Y.S., Chang, Y.J., Lee, J.S., Yoon, J.G., Song, T.K., and Noh, T.W. (2005) Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett., 95, 237602.
Larsen, P.K., Dormans, G.J.M., Taylor, D.J., and van Veldhoven, P.J. (1994) Ferroelectric properties and fatigue of Pb0.51Zr0.49O3 thin films of varying thickness: blocking layer model. J. Appl. Phys., 76, 2405-2413.
Miller, S.L., Nasby, R.D., Schwank, J.R., Rodgers, M.S., and Dressendorfer, P.V. (1990) Device modeling of ferroelectric capacitors. J. Appl. Phys., 68, 6463-6471.
Tagantsev, A.K., Landivar, M., Colla, E., and Setter, N. (1995) Identification of passive layer in ferroelectric thin-films from their switching parameters. J. Appl. Phys., 78, 2623-2630.
Lebedev, N.I. and Sigov, A.S. (1994) Surface inhomogeneities and coercive field of thin ferroelectric films. Integr. Ferroelectr., 4, 21.
Tagantsev, A.K. (1997) Size effects in polarization switching in ferroelectric thin films. Integr. Ferroelectr., 16, 237-244.
Känzig, W. (1955) Space charge layer near the surface of a ferroelectric. Phys. Rev., 98, 549-550.
Yoo, I.K. and Desu, S.B. (1992) Mechanism of fatigue in ferroelectric thin-films. Phys. Stat. Sol. A, 133, 565-573.
Dawber, M. and Scott, J.F. (2000) A model for fatigue in ferroelectric perovskite thin films. Appl. Phys. Lett., 76, 1060-1062.
Lo, V.C. (2002) Modeling the role of oxygen vacancy on ferroelectric properties in thin films. J. Appl. Phys., 92, 6778-6786.
Black, C. and Welser, J. (1999) Electricfield penetration into metals: consequences for high-dielectricconstant capacitors. IEEE Trans. Electron Devices, 46, 776-780.
Mehta, R.R., Silverman, B.D., and Jacobs, J.T. (1973) Depolarization fields in thin ferroelectric films. J. Appl. Phys., 44, 3379-3385.
Batra, I.P. and Silverman, B.D. (1972) Thermodynamic stability of thin film ferroelectric films. Solid State Commun., 11, 291-294.
Batra, I.P., Wurfel, P., and Silverman, B.D. (1973) Depolarization field and stability considerations in thin ferroelectric films. J. Vac. Sci. Technol., 10, 687-692.
Wurfel, P., Batra, I.P., and Jacobs, J.T. (1973) Polarization instability in thin ferroelectric films. Phys. Rev. Lett., 30, 1218-1221.
Stengel, M. and Spaldin, N.A. (2006) Origin of the dielectric dead layer in nanoscale capacitors. Nature, 443, 679-682.
Sai, N., Kolpak, A.M., and Rappe, A.M. (2005) Ferroelectricity in ultra-thin perovskite films. Phys. Rev. B, 72, 020101.
Gerra, G., Tagantsev, A.K., Setter, N., and Parlinski, K. (2006) Ionic polarizability of conductive metaloxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett., 96, 107603.
Jia, C.L., Nagarajan, V., He, J.Q., Houben, L., Zhao, T., Ramesh, R., Urban, K., and Waser, R. (2007) Unitcell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater., 6, 64-69.
Chisholm, M.F., Luo, W., Oxley, M.P., Pantelides, S.T., and Lee, H.N. (2010) Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett., 105, 197602.
Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, D.L., and Tarascon, J.M. (1991) Epitaxial cuprate superconductor/ ferroelectric heterostructures. Science, 252, 944-946.
Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A. (1992) Fatigue and retention in ferroelectric YBaCuO/ PbZrTiO/YBaCuO heterostructures. Appl. Phys. Lett., 61, 1537-1539.
Watanabe, Y., Okano, M., and Masuda, A. (2001) Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys. Rev. Lett., 86, 332-335.
Spanier, J.E., Kolpak, A.M., Urban, J.J., Grinberg, I., Ouyang, L., Yun, W.S., Rappe, A.M., and Park, H. (2006) Ferroelectric phase transitions in individual single-crystalline BaTiO3 nanowires. Nano Lett., 6, 735-739.
Fong, D.D., Kolpak, A.M., Eastman, J. A., Streiffer, S.K., Fuoss, P.H., Stephenson, G.B., Thompson, C., Kim, D.M., Choi, K.J., Eom, C.B., Grinberg, I., and Rappe, A.M. (2006) Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys. Rev. Lett., 96, 127601.
Kolpak, A.M., Grinberg, I., and Rappe, A.M. (2007) Polarization effects on the surface chemistry of PbTiO3-supported Pt films. Phys. Rev. Lett., 98, 166101.
Li, D., Zhao, M.H., Garra, J., Kolpak, A.M., Rappe, A.M., Bonnell, D.A., and Vohs, J.M. (2008) Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat. Mater., 7, 473-477.
Wang, R.V., Fong, D.D., Jiang, F., Highland, M.J., Fuoss, P.H., Thompson, C., Kolpak, A.M., Eastman, J.A., Streiffer, S.K., Rappe, A.M., and Stephenson, G.B. (2009) Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett., 102, 047601.
Stengel, M., Aguado-Puente, P., Spaldin, N.A., and Junquera, J. (2011) Band alignment at metal/ferroelectric interfaces: insights and artifacts from first principles. Phys. Rev. B, 83, 235112.
Dawber, M., Chandra, P., Littlewood, P.B., and Scott, J.F. (2003) Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys.: Condens. Matter, 15, L393-L398.
Stengel, M., Vanderbilt, D., and Spaldin, N.A. (2009) First-principles modeling of ferroelectric capacitors via constrained displacement field calculations. Phys. Rev B, 80, 224110.
Wu, X., Stengel, M., Rabe, K.M., and Vanderbilt, D. (2008) Predicting polarization and nonlinear dielectric response of arbitrary perovskite superlattice sequences. Phys. Rev. Lett., 101, 087601.
Wu, X., Rabe, K.M., and Vanderbilt, D. (2011) Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3 superlattices. Phys. Rev. B, 83, 020104(R).
Stengel, M., Vanderbilt, D., and Spaldin, N.A. (2009) Enhancement of ferroelectricity at metal-oxide interfaces. Nat. Mater., 8, 392-397.
Landau, L. and Lifshitz, E. (1935) Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion, 8, 153.
Kittel, C. (1946) Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev., 70, 965-971.
Kittel, C. (1949) Physical theory of ferromagnetic domains. Rev. Mod. Phys., 21, 541-583.
Mitsui, J. and Furuichi, J. (1953) Domain structure of rochelle salt and K2PO4. Phys. Rev., 90, 193-202.
Streiffer, S.K., Eastman, J.A., Fong, D. D., Thompson, C., Munkholm, A., Murty, M.V.R., Auciello, O., Bai, G.R., and Stephenson, G.B. (2002) Observation of nanoscale 1801 stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett., 89, 067601.
Hehn, M., Padovani, S., Ounadjela, K., and Bucher, J.P. (1996) Nanoscale magnetic domain structures in epitaxial cobalt films. Phys. Rev. B, 54, 3428-3433.
Hubert, A. and Schäfer, R. (1998) Magnetic Domains, Springer, Berlin.
Meyer, B. and Vanderbilt, D. (2002) Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B, 65, 104111.
Catalan, G., Scott, J.F., Schilling, A., and Gregg, J.M. (2007) Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys.: Condens. Matter, 19, 022201.
Schilling, A., Adams, T.B., Bowman, R.M., Gregg, J.M., Catalan, G., and Scott, J.F. (2006) Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B, 74, 024115.
Lai, B.K., Ponomareva, I., Kornev, I., Bellaiche, L., and Salamo, G.J. (2007) Thickness dependence of 1801 stripe domains in ferroelectric ultrathin films: a first-principles based study. Appl. Phys. Lett., 91, 152909.
Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., and Thompson, C. (2004) Ferroelectricity in ultrathin perovskite films. Science, 304, 1650-1653.
Catalan, G., Schilling, A., Scott, J.F., and Gregg, J.M. (2007) Domains in three-dimensional ferroelectric nanostructures: theory and experiment. J. Phys.: Condens. Matter, 19, 132201.
Kopal, A., Bahnik, T., and Fousek, J. (1997) Domain formation in thin ferroelectric films: the role of depolarization energy. Ferroelectrics, 202, 267-274.
Bjorkstam, J.L. and Oettel, R.E. (1967) 180 degrees domain formation in ferroelectrics with shorted electrodes. Phys. Rev., 159, 427.
Bratkovsky, A.M. and Levanyuk, A.P. (2000) Abrupt appearance of the domain pattern and fatigue of thin ferroelectric films. Phys. Rev. Lett., 84, 3177-3190.
Pompe, W., Gong, X., Suo, Z., and Speck, J.S. (1993) Elastic energy-release due to domain formation in the strained epitaxy of ferroelectric and ferroelastic films. J. Appl. Phys., 74, 6012-6019.
Pertsev, N.A. and Zembilgotov, A.G. (1995) Energetics and geometry of 90-degrees domain-structures in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys., 78, 6170-6180.
Bratkovsky, A.M. and Levanyuk, A.P. (2001) Phase transitions, stability, and dielectric response of the domain structure in ferroelectric-ferroelastic thin films. Phys. Rev. Lett., 86, 3642-3645.
Stephenson, G.B. and Elder, K.R. (2006) Theory for equilibrium 1801 stripe domains in PbTiO3 films. J. Appl. Phys., 100, 051601.
Prosandeev, S. and Bellaiche, L. (2007) Asymmetric screening of the depolarizing field in a ferroelectric thin film. Phys. Rev. B, 75, 172109.
Aguado-Puente, P. and Junquera, J. (2008) Ferromagneticlike closure domains in ferroelectric ultrathin films: first principles simulations. Phys. Rev. Lett., 100, 177601.
Shimada, T., Tomoda, S., and Kitamura, T. (2010) Ab initio study of ferroelectric closure domains in ultrathin PbTiO3 films. Phys. Rev. B, 81, 144116.
Kornev, I., Fu, H., and Bellaiche, L. (2004) Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys. Rev. Lett., 93, 196104.
Lai, B.K., Ponomareva, I., Naumov, I.I., Kornev, I., Fu, H., Bellaiche, L., and Salamo, G.J. (2006) Electric-fieldinduced domain evolution in ferroelectric ultra-thin films. Phys. Rev. Lett., 96, 137602.
Ponomareva, I. and Bellaiche, L. (2006) Influence of the growth direction on properties of ferroelectric ultrathin films. Phys. Rev. B, 74, 064102.
Wu, Z., Huang, N., Liu, Z.,Wu, J., Duan, W., Gu, B.L., and Zhang, X.W. (2004) Ferroelectricity in Pb(Zr0.5Ti0.5) O3 thin films: critical thickness and 180° stripe domains. Phys. Rev. B, 70, 104108.
Prosandeev, S., Lisenkov, S., and Bellaiche, L. (2010) Kittel law in BiFeO3 ultrathin films: a firstprinciples-based study. Phys. Rev. Lett., 105, 147603.
Lisenkov, S., Ponomareva, I., and Bellaiche, L. (2009) Unusual static and dynamical characteristics of domain evolution in ferroelectric superlattices. Phys. Rev. B, 79, 024101.
Paruch, P., Giamarchi, T., and Triscone, J.M. (2007) in Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol. 105, Springer, Berlin, pp. 339-362.
Catalan, G., Bea, H., Fusil, S., Bibes, M., Paruch, P., Barthelemy, A., and Scott, J.F. (2008) Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett., 100, 027602.
Tangantsev, A.K., Cross, L.E., and Fousek J. (2010) Domains in Ferroic Crystals and Thin Films, XIII. Springer.
Urban, J.J., Yun, W.S., Gu, Q., and Park, H. (2002) Synthesis of singlecrystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc., 124, 1186-1187.
Yun,W.S., Urban, J.J.,Gu, Q., and Park, H. (2002) Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett., 2, 447-450.
Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Steinhart, M., Wehrspohn, R.B., Wendorff, J.H., Ramesh, R., and Alexe, M. (2003) Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett., 83, 440-442.
O'Brien, S., Brus, L., and Murray, C.B. (2001) Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc., 123, 12085-12086.
Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G. S., Scott, J.F., and Gregg, J.M. (2009) Domains in ferroelectric nanodots. Nano Lett., 9, 3359-3364.
Liu, C., Zou, B.S., Rondinone, A.J., and Zhang, Z.J. (2001) Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J. Am. Chem. Soc., 123, 4344-4345.
Fu, H.X. and Bellaiche, L. (2003) Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett., 91, 257601.
Naumov, I.I., Bellaiche, L., and Fu, H. X. (2004) Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature, 432, 737-740.
Ponomareva, I., Naumov, I.I., Kornev, I., Fu, H., and Bellaiche, L. (2005) Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Phys. Rev. B, 72, 140102(R).
Prosandeev, S., Ponomareva, I., Kornev, I., Naumov, I., and Bellaiche, L. (2006) Controlling toroidal moment by means of an inhomogeneous static field: an ab study. Phys. Rev. Lett., 96, 237601.
Prosandeev, S. and Bellaiche, L. (2007) Characteristics and signatures of dipole vortices in ferroelectric nanodots: firstprinciples-based simulations and analytical expressions. Phys. Rev. B, 75, 094102.
Prosandeev, S. and Bellaiche, L. (2008) Controlling double vortex states in lowdimensional dipolar systems. Phys. Rev. Lett., 101, 097203.
Prosandeev, S. and Bellaiche, L. (2009) Hypertoroidal moment in complex dipolar structures. J. Mater. Sci., 44, 5235-5248.
Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I., and Bellaiche, L. (2008) Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys.: Condens. Matter, 20, 193201.
Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., and Ono, T. (2000) Magnetic vortex core observation in circular dots of permalloy. Science, 289, 930-932.
Wachowiak, A., Wiebe, J., Bode, M., Pietzsch, O., Morgenstern, M., and Wiesendanger, R. (2002) Direct observation of internal spin structure of magnetic vortex cores. Science, 298, 577-580.
Choe, S.B., Acremann, Y., Scholl, A., Bauer, A., Doran, A., Stohr, J., and Padmore, H.A. (2004) Vortex coredriven magnetization dynamics. Science, 304, 420-422.
Zhu, F.Q., Chern, G.W., Tchernyshyov, O., Zhu, X.C., Zhu, J.G., and Chien, C.L. (2006) Magnetic bistability and controllable reversal of
Rodríguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., and Alexe, M. (2009) Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett., 9, 1127-1131.
Nelson, C.T., Wincheser, B., Zhang, Y., Kim, S.J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.H., Eom, C.B., Schlom, D.G., Chen, L.Q., and Pan, X. (2011) Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett., 11, 828-834.
Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I. (2011) Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science, 331, 1420-1423.
McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A., and Gregg, J.M. (2011) Mesoscale fluxclosure domain formation in BaTiO3. Nature Communications, 2, 404.
Salje, E., and Zhang, H. (2009) Domain boundary engineering. Phase Transitions, 82, 452.
Goncalves-Ferreira, L., Redfern, S.A.T., Artacho, E., and Salje, E.K.H. (2008) Ferrielectric Twin Walls in CaTiO3. Physical Review Letters, 101, 097602.
Aird, A., and Salje, E.K.H. (1998) Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. - Condens. Mat., 10, L377.
Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S. V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., and Ramesh, R. (2009) Conduction at domain walls in oxide multiferroics. Nat. Mater., 8, 229-234.
Yang, S.Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.H., Rossell, M.D., Yu, P., Chu, Y.H., Scott, J.F., Ager, J. W., Martin, L.W., and Ramesh, R. (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol., 5, 143-147.
Tabata, H., Tanaka, H., and Kawai, T. (1994) Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl. Phys. Lett., 65, 1970-1972.
Neaton, J.B. and Rabe, K.M. (2003) Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett., 82, 1586-1588.
Dawber, M., Stucki, N., Lichtensteiger, C., Gariglio, S., Ghosez, P., and Triscone, J.M. (2007) Tailoring the properties of artificially layered ferroelectric superlattices. Adv. Mater., 19, 4153.
Shimuta, T., Nakagawara, O., Makino, T., Arai, S., Tabata, H., and Kawai, T. (2004) Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with asymmetric structure. J. Appl. Phys., 91, 2290-2294.
Tian, W., Jiang, J.C., Pan, X.Q., Haeni, J.H., Li, Y.L., Chen, L.Q., Schlom, D.G., Neaton, J.B., Rabe, K.M., and Jia, Q.X. (2006) Structural evidence for enhanced polarization in a commensurate shortperiod BaTiO3/SrTiO3 superlattice. Appl. Phys. Lett., 89, 092905.
Tenne, D.A., Bruchhausen, A., Lanzillotti-Kimura, N.D., Fainstein, A., Katiyar, R.S., Cantarero, A., Soukiassian, A., Vaithyanathan, V., Haeni, J.H., Tian, W., Schlom, D.G., Choi, K.J., Kim, D.M., Eom, C.B., Sun, H.P., Pan, X.Q., Li, Y.L., Chen, L.Q., Jia, Q.X., Nakhmanson, S.M., Rabe, K. M., and Xi, X.X. (2006) Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science, 313, 1614-1616.
Lisenkov, S. and Bellaiche, L. (2007) Phase diagrams of BaTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B, 76, 020102(R).
Specht, E.D., Christen, H.M., Norton, D.P., and Boatner, L.A. (1998) X-ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers. Phys. Rev. Lett., 80, 4317-4320.
Stephanovich, V.A., Lukyanchuk, I.A., and Karkut, M.G. (2005) Domainenhanced interlayer coupling in ferroelectric/paralectric superlattices. Phys. Rev. Lett., 94, 047601.
Sepliarsky, M., Phillpot, S.R., Wolf, D., Stachiotti, M.G., and Migoni, R.L. (2001) Long-ranged ferroelectric interactions in perovskite superlattices. Phys. Rev. B, 64, 060101(R).
Zubko, P., Stucki, N., Lichtensteiger, C., and Triscone, J.M. (2010) X-ray diffraction studies of 1801 ferroelectric domains in PbTiO3/SrTiO3 superlattices under applied electric fields. Phys. Rev. Lett., 104, 187601.
Johnston, K., Huang, X., Neaton, J.B., and Rabe, K.M. (2005) First-principles study if symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion. Phys. Rev. B, 71, 100103(R).
Lee, D., Behera, R.K., Wu, P., Xu, H., Li, Y.L., Sinnott, S.B., Phillpot, S.R., Chen, L.Q., and Gopalan, V. (2009) Mixed Bloch-Neel-Ising character of 1801 ferroelectric domain walls. Phys. Rev. B, 80, 060102.
Jiang, A.Q., Scott, J.F., Lu, H., and Chen, Z. (2003) Phase transitions and polarizations in epitaxial BaTiO3/ SrTiO3 superlattices studied by secondharmonic generation. J. Appl. Phys., 93, 1180-1185.
Li, Y.L., Hu, S.Y., Tenne, D., Soukiassian, A., Schlom, D.G., Chen, L.Q., Xi, X.X., Choi, K.J., Eom, C.B., Saxena, A., Lookman, T., and Jia, Q.X. (2007) Interfacial coherency and ferroelectricity of BaTiO3/SrTiO3 superlattice films. Appl. Phys. Lett., 91, 252904.
O'Neill, D., Bowman, R.M., and Gregg, J.M. (2000) Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett., 77, 1520-1522.
Gregg, J.M. (2003) The many surprises of ferroelectric superlattices. J. Phys.: Condens. Matter, 15, V11.
Munkholm, A., Streiffer, S.K., Murty, M.V.R., Eastman, J.A., Thompson, C., Auciello, O., Thompson, L., Moore, J. F., and Stephenson, G.B. (2002) Antiferrodistortive reconstruction of the PbTiO3 (001) surface. Phys. Rev. Lett., 88, 016101.
Bickel, N., Schmidt, G., Heinz, K., and Müller, K. (1989) Ferroelectric relaxation of the SrTiO3(100) surface. Phys. Rev. Lett., 62, 2009-2011.
Ghosez, P. and Triscone, J.M. (2011) Coupling of three lattice instabilities. Nat. Mater., 10, 269.
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J.M., and Ghosez, P. (2008) Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 452, 732-726.
Sai, N., Fennie, C.J., and Demkov, A.A. (2009) Absence of critical thickness in an ultrathin improper ferroelectric film. Phys. Rev. Lett., 102, 107601.
Benedek, N.A. and Fennie, C.J. (2011) Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett., 106, 107204.