[en] We reported previously that a tilapia (Oreochromis mossambicus) heat shock protein 70 (HSP70) promoter is able to confer heat shock response on a reporter gene after transient expression both in cell culture and in microinjected zebrafish embryos. Here we present the first functional analysis of a fish HSP70 promoter, the tiHSP70 promoter. Using transient expression experiments in carp EPC (epithelioma papulosum cyprini) cells and in microinjected zebrafish embryos, we show that a distal heat shock response element (HSE1) at approx. -800 is predominantly responsible for the heat shock response of the tiHSP70 promoter. This element specifically binds an inducible transcription factor, most probably heat shock factor, and a constitutive factor. The constitutive complex is not observed with the non-functional, proximal HSE3 sequence, suggesting that both factors are required for the heat shock response mediated by HSE1.
Research Center/Unit :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Molina, Alfredo
Di Martino, Emmanuel
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Muller, Marc ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Language :
English
Title :
Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element
Ritossa F. (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18:571-573.
Morimoto R.I. (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-3796.
Hartl U.F. (1996) Molecular chaperones in cellular protein folding. Nature (London) 381:571-580.
Holmgren R., Corces V., Morimoto R., Blackman R., Meselson R. (1981) Sequence homologies in the 5′ regions of four Drosophila heat shock genes. Proc. Natl. Acad. Sci. U.S.A. 78:3775-3778.
Pelham H.R. (1982) A regulatory upstream promoter element in the Drosophila hsp70 heat shock gene. Cell 30:517-528.
Bienz M., Pelham H.R. (1987) Mechanisms of heat shock gene activation in higher eukaryotes. Adv. Genet. 24:31-72.
Xiao H., Lis J.T. (1988) Germline transformation used to define key features of heat shock response elements. Science 239:1139-1142.
Amin J., Ananthan J., Voellmy R. (1988) Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761-3769.
Fernandes M., Xiao H., Lis J.T. (1994) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res. 22:167-173.
Rabindran S.K., Haroun R.I., Clos J., Wisniewski J., Wu C. (1993) Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259:230-234.
Morimoto R.I. (1993) Cells in stress: Transcriptional activation of heat shock genes. Science 259:1409-1410.
Baler R., Dahl G., Voellmy R. (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13:2486-2496.
Sarge K.D., Murphy S.P., Morimoto R.I. (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392-1407.
Sistonen L., Sarge K.D., Morimoto R.I. (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14:2087-2099.
Nakai A., Kawazoe Y., Tanabe M., Nagata K., Morimoto R.I. (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell. Biol. 15:5168-5178.
Bevilacqua A., Fiorenza M.T., Mangia F. (1997) Developmental activation of an episomic hsp70 gene promoter in two-cell mouse embryos by transcription factor Sp1. Nucleic Acids Res. 25:1333-1338.
Bienz M., Pelham H.R. (1986) Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell 45:753-760.
Bevilacqua A., Fiorenza M.T., Mangia F. (2000) A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation. Development 127:1541-1551.
Kothary R.K., Jones D., Candido E.P. (1984) 70-Kilodalton heat shock polypeptides from rainbow trout: Characterization of cDNA sequences. Mol. Cell. Biol. 4:1785-1791.
Arai A., Naruse K., Mitani H., Shima A. (1995) Cloning and characterization of cDNAs for 70-kDa heat-shock proteins (Hsp70) from two fish species of the genus Oryzias. Jpn. J. Genet. 70:423-433.
Lele Z., Engel S., Krone P.H. (1997) hsp47 and hsp70 gene expression is differentially regulated in a stress- and tissue-specific manner in zebrafish embryos. Dev. Genet. 21:123-133.
Santacruz H., Vriz S., Angelier N. (1997) Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev. Genet. 21:223-233.
Lim E.H., Brenner S. (1999) Short-range linkage relationships, genomic organisation and sequence comparisons of a cluster of five HSP70 genes in Fugu rubripes. Cell Mol. Life Sci. 55:668-678.
Halloran M.C., Sato-Maeda M., Warren J.T., Su F., Lele Z., Krone P.H., Kuwada J.Y., Shoji W. (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953-1960.
Molina A., Biemar F., Muller F., Iyengar A., Prunet P., Maclean N., Martial J.A., Muller M. (2000) Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett. 474:5-10.
Poncelet D.A., Bellefroid E.J., Bastiaens P.V., Demoitié M.A., Marine J.C., Pendeville H., Alami Y., Devos N., Lecocq P., Ogawa T. (1998) Functional analysis of the ZNF85 Krab zinc finger protein, a member of the highly homologous ZNF91 gene family. DNA Cell Biol. 17:931-942.
Poncelet A.C., Levavi-Sivan B., Muller M., Yaron Z., Martial J.A., Belayew A. (1996) The tilapia prolactin I gene: Evolutionary conservation of the regulatory elements directing pituitary-specific expression. DNA Cell Biol. 15:679-692.
Day R.N., Kawecki M., Berry D. (1998) Dual-function reporter protein for analysis of gene expression in living cells. Biotechniques 25:848-850.
Fijan N., Sulimanavoic D., Bearzotti M., Muzinic M.D., Zwilenberg L.O., Chilmonzyk S., Vautherot J.F., De Kinkelin P. (1983) Some properties of the Epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Ann. Virol. 134:207-220.
Brasier A.R., Tate J.E., Habener J.F. (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7:1116-1122.
Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1989.
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), University of Oregon Press, Eugene; 1993.
Williams G.T., Morimoto R.I. (1990) Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol. Cell. Biol. 10:3125-3136.
Morimoto R.I., Hunt C., Huang S.Y., Berg K.L., Banerji S.S. (1986) Organization, nucleotide sequence, and transcription of the chicken HSP70 gene. J. Biol. Chem. 261:12692-12699.
Corces V., Pellicer A. (1984) Identification of sequences involved in the transcriptional control of a Drosophila heat-shock gene. J. Biol. Chem. 259:14812-14817.
Gordon S., Bharadwaj S., Hnatov A., Ali A., Ovsenek N. (1997) Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Dev. Biol. 181:47-63.
Yang S.H., Nussenzweig A., Yang W.H., Kim D., Li G.C. (1996) Cloning and characterization of rat Ku70: Involvement of Ku autoantigen in the heat-shock response. Radiat. Res. 146:603-611.
Mosser D.D., Theodorakis N.G., Morimoto R.I. (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription tares in human cells. Mol. Cell. Biol. 8:4736-4744.
Nussenzweig A., Sokol K., Burgman P., Li L., Li G.C. (1997) Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: The effects of ionizing radiation on growth, survival, and development. Proc. Natl. Acad. Sci. U.S.A. 94:13588-13593.
Hsu H.L., Gilley D., Galande S.A., Hande M.P., Allen B., Kim S.H., Li G.C., Campisi J., Kohwi-Shigematsu T., Chen D.J. (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14:2807-2812.
Wilkins R.C., Lis J.T. (1998) GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res. 26:2672-2678.
Bevilacqua A., Fiorenza M.T., Mangia F. (2000) A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation. Development 127:1541-1551.