Characterization of the human Fc gamma RIIB gene promoter: human zinc-finger proteins (ZNF140 and ZNF91) that bind to different regions function as transcription repressors
[en] Expression of the human low-affinity Fc receptors for IgG (human Fc gamma RII) is differentially regulated. We report here the characterization of the promoter structure of the human Fc gamma RIIB gene and the isolation of the promoter region-binding proteins by a yeast one-hybrid assay. The minimal 154-bp region upstream from the transcription start site of the human Fc gamma RIIB gene was shown to possess promoter activity in a variety of cells. An electrophoretic mobility shift assay indicated that multiple nuclear factors in cell extracts bind to the two regions [F2-3 (-110 to -93) and F4-3 (-47 to -31)] of the human Fc gamma RIIB gene promoter. Mutation analysis indicated that GGGAGGAGC (-105 to -97) and AATTTGTTTGCC (-47 to -36) sequences are responsible for binding to nuclear factors respectively. By using GGGAGGAGC and AATTTGTTTGCC as bait sequences, we cloned two zinc-finger proteins (ZNF140 and ZNF91) that bind to the F2-3 and F4-3 regions within the promoter of the human Fc gamma RIIB gene respectively. When the ZNF140 and ZNF91 were transfected with reporter plasmid, both showed repressor activity with additive effects. Thus, these results indicate that these cloned ZNF140 and ZNF91 proteins function as repressors for the human Fc gamma RIIB transcription.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Nishimura, Tadahiro; National Institute of Infectious Diseases Tokyo
Narita, Tadashi; National Institute of Infectious Diseases Tokyo
Miyazaki, Emi; National Institute of Infectious Diseases Tokyo
Ito, Tohru; National Institute of Infectious Diseases Tokyo
Nishimoto, Norihiro; Osaka University > School of Health and Sport Science
Yoshizaki, Kazuyuki; Osaka University > School of Health and Sport Science
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Bellfroid, Eric J
Vissing, Henrik; Novo Nordisk > Molecular and Cellular Biology
Taniyama, Tadayoshi; National Institute of Infectious Diseases Tokyo
Language :
English
Title :
Characterization of the human Fc gamma RIIB gene promoter: human zinc-finger proteins (ZNF140 and ZNF91) that bind to different regions function as transcription repressors
van de Winkel J.G.J., Anderson C.L. (1991) Biology of human Immunoglobulin G Fc receptors. J. Leuk. Biol. 49:511.
Anderson C.L., Shen L., Eicher D.M., Wewers M.D., Gill J.K. (1990) Phagocytosis mediated by three distinct Fγ receptor classes on human leukocytes. J. Exp. Med. 171:1333.
Leslie R.C.Q. (1985) Complex aggregation: A critical event in macrophage handling of soluble immune complexes. Immunol. Today 6:183.
Nathan C., Cohn Z. (1980) Role of oxygen-dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J. Exp. Med. 152:198.
Kipps T.J., Parham P., Punt J., Herzenberg L.A. (1985) Importance of immunoglobulin isotype in human antibody-dependent cell-mediated cytotoxicity directed by murine monoclonal antibodies. J. Exp. Med. 161:1.
Ferreri N.R., Howland W.C., Spiegelberg H.L. (1986) Release of leukotrienes C4 and B4 and prostaglandin E2 from human monocytes stimulated with aggregated IgG, IgA, and IgE. J. Immunol. 136:4188.
Bich Thuy L.T., Revillard J.P. (1982) Selective suppression of human B lymphocyte differentiation into IgG-producing cells by soluble Fcγ receptors. J. Immunol. 129:150.
Yamamoto K., Johnston R. Jr. (1984) Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J. Exp. Med. 159:405.
Brooks D.G., Qiu W.Q., Luster A.D., Ravetch J.V. (1989) Structure and expression of human IgG FcR II (CD32) Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. J. Exp. Med. 170:1369.
Qiu W.Q., de Bruin D., Brownstein B.H., Pearse R., Ravetch J.V. (1990) Organization of the human and mouse low-affinity FcγR genes: Duplication and recombination. Science 248:732.
Ravetch J.V., Anderson C.L. (1990) FcγR family: Proteins, transcripts, and genes. Fc Receptors and the Action of Antibodies , Metzger, H., ed., American Society for Microbiology, Washington, DC.; 211.
Cassel D.L., Keller M.A., Surrey S., Schwartz E., Schreiber A.D., Rappaport E.C., McKenzie S.E. (1993) Differential expression of FcγRIIA, FcγRIIB and FcγRIIC in hematopoietic cells: Analysis of transcripts. Mol. Immunol. 30:451.
Stuart S.G., Simister N.E., Clarkson S.B., Kacinski B.M., Shapiro M., Mellman I. (1989) Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J. 8:3657.
McKenzie S.E., Keller M.A., Cassel D.L., Schreiber A.D., Schwartz E., Surrey S., Rappaport E.F. (1992) Characterization of the 5′-flanking transcriptional regulatory region of the human Fcγ receptor gene, FcγRIIA. Mol. Immunol. 29:1165.
Niwa H., Yamamura K., Miyazaki J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193.
Stenegelin S., Stamenkovic I., Seed B. (1988) Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning. EMBO J. 7:1053.
Tommerup N., Vissing H. (1995) Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics 27:259.
Bellefroid E.J., Marine J.-C., Ried T., Lecocq P.J., Riviere M., Amemiya C., Poncelet D.A., Coulie P.G., de Jong P., Szpirer C., Ward D.C., Martial J.A. (1993) Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells. EMBO J. 12:1363.
Dignam J.D., Lebovitz R.M., Roeder R.G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475.
Kurata N., Akiyama H., Taniyama T., Marunouchi T. (1989) Dose-dependent regulation of macrophage differentiation by mos mRNA in a human monocytic cell line. EMBO J. 8:457.
Taniyama T., Yoshida K., Furuta T. (1988) Demonstration of a novel tumor killing factor secreted from human macrophage-monocyte hybridomas. J. Immunol. 141:4061.
Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 26:171.
Gorman C.M., Moffat L.F., Howard B.H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044.
Klemsz M.J., McKercher S.R., Celada A., Beveren C.V., Maki R.A. (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncoprotein. Cell 61:113.
Ray D., Bosselut R., Ghysdale J., Mattei M.-G., Tavitian A., Moreau-Gachelin F. (1992) Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol. Cell. Biol. 12:4297.
Feinman R., Qiu W.Q., Pearse R.N., Nikolajczyk S., Sen R., Sheffery M., Ravetch J.V. (1994) PU.1 and an HLH family member contribute to the myeloid-specific transcription of the FcγRIIIA promoter. EMBO J. 13:3852.
van de Winkel J.G.J., Ernst L.K., Anderson C.L., Chiu I.-M. (1991) Gene organization of the human high affinity receptor for IgG, FcγRI (CD64). J. Biol. Chem. 266:13449.
Pearse R.N., Feinman R., Ravetch J.V. (1991) Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: Transcriptional induction by γ-interferon is mediated through common DNA response elements. Proc. Natl Acad. Sci. USA 88:11305.
Benech P.D., Sastry K., Iyer R.R., Eichbaum Q.G., Raveh D.P., Ezekowitz R.A.B. (1992) Definition of interferon γ-response elements in a novel human Fcγ receptor gene (FcγRlb) and characterization of the gene structure. J. Exp. Med. 176:1115.
Eichbaum Q.G., Iyer R., Raveh D.P., Mathieu C., Ezekowitz R.A.B. (1994) Restriction of interferon γ responsiveness and basal expression of the myeloid human FcγgR1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. J. Exp. Med. 179:1985.
Perez C., Wietzerbin J., Benech P.D. (1993) Two cis-DNA elements involved in myeloid-cell-specific expression and gamma interferon (IFN-γ) activation of the human high-affinity Fcγ receptor gene: A novel IFN regulatory mechanism. Mol. Cell. Biol. 13:2182.
Perez C., Coeffier E., Moreau-Gachelin F., Wietzerbin J., Benech P.D. (1994) Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fcγ receptor. Mol. Cell. Biol. 14:5023.
Bellefroid E.J., Poncelet D.A., Lecocq P.J., Revelant O., Martial J.A. (1991) The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Natl Acad. Sci. USA 88:3608.
Bellefroid E.J., Lecocq P.J., Benhida A., Poncelet D.A., Belayew A., Martial J.A. (1989) The human genome contains hundreds of genes coding for finger proteins of the Kruppel type. DNA 8:377.
Crossley P.H., Little P.F.R. (1991) A cluster of related zinc finger protein genes is deleted in the mouse embryonic lethal mutation tw18. Proc. Natl Acad. Sci. USA 88:7923.
Tautz D., Lehmann R., Schnurch H., Schuh R., Seifert E., Kienlin A., Jones K., Jackie H. (1987) Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327:383.
Chavrier P., Lemaire P., Revelant O., Bravo R., Charnay P. (1988) Characterization of a mouse multigene family that encodes zinc finger structure. Mol. Cell. Biol. 8:1319.
Margolin J.F., Friedman J.R., Meyer W.K.-H., Vissing H., Thiesen H.-J., Raucher I.F.J. (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc. Natl Acad. Sci. USA 91:4509.
Vissing H., Meyer W.K., Aagaard L., Tommerup N., Thiesen H.J. (1995) Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett. 369:153.
Kaplan J., Calame K. (1997) The ZiN/POZ domain of ZF5 is required for both transcriptional activation and repression. Nucleic Acids Res. 25:1108.
Numoto M., Niwa O., Kaplan J., Wong K.-K., Merrell K., Kamiya K., Yanagihara K., Calame K. (1993) Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res. 21:3767.
Sauer F., Jackle H. (1991) Concentration-dependent transcriptional activation or repression by Krupple from a single binding site. Nature 353:563.