Jones DP. Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 2006; 9: 169-81
Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthr Cartil 2005; 13: 643-54.
Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 2003; 11: 747-55.
Zorov DB, Bannikova SY, Belousov VV, et al. Reactive oxygen and nitrogen species: friends or foes? Biochemistry (Mosc) 2005; 70: 215-21.
Deby C, Goutier R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol 1990; 39: 399-405.
Bloodsworth A, O'Donnell VB, Freeman BA. Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler Thromb Vasc Biol 2000; 20: 1707-15.
Lancaster JR, Jr., Xie K. Tumors face NO problems? Cancer Res 2006; 66: 6459-62.
Inoue S, Kawanishi S. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett 1995; 371: 86-8.
Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R. Pathways of peroxynitrite oxidation of thiol groups. Biochem J 1997; 322 (Pt 1): 167-73.
Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 1995; 268: L699-722.
Koppenol WH. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 1998; 25: 385-91.
Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990; 87: 1620-4.
Beckman JS, Ye YZ, Chen J, Conger KA. The interactions of nitric oxide with oxygen radicals and scavengers in cerebral ischemic injury. Adv Neurol 1996; 71: 339-50; discussion 350-4.
Mouithys-Mickalad A, Kohnen S, Deby C, Noels AF, Lamy M, Deby-Dupont G. Peroxynitrite reacts with biological nitrogen-containing cyclic molecules by a radical pathway, as demonstrated by ultraweak luminescence coupled with ESR technique. Biochem Biophys Res.Commun 1999; 259: 460-4.
Sampson JB, Ye Y, Rosen H, Beckman JS. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys 1998; 356: 207-13.
Eiserich JP, Hristova M, Cross CE, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 1998; 391: 393-7.
Hazen SL, Zhang R, Shen Z, et al. Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation In vivo. Circ Res 1999; 85: 950-8.
Koppenol WH. The Haber-Weiss cycle-70 years later. Redox Rep 2001; 6: 229-34.
Henrotin Y, Deby-Dupont G, Deby C, De Bruyn M, Lamy M, Franchimont P. Production of active oxygen species by isolated human chondrocytes. Br J Rheumatol 1993; 32: 562-7.
Tiku ML, Yan YP, Chen KY. Hydroxyl radical formation in chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping reagents. Free Radic Res 1998; 29: 177-87.
Tiku ML, Liesch JB, Robertson FM. Production of hydrogen peroxide by rabbit articular chondrocytes. Enhancement by cytokines. J Immunol 1990; 145: 690-6.
Babior BM. NADPH oxidase: an update. Blopd 1999; 93: 1464-76.
Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signalling. Am J Physiol Lung Cell Mol Physiol 2000; 279: L1005-28.
Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signalling. Regul Pept 2000; 91: 21-7.
Grange L, Nguyen MV, Lardy B, et al. NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid Redox Signal 2046; 8: 1485-96.
Hiran TS, Moulton PJ, Hancock JT. Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 1997; 23: 736-43.
Moulton PJ, Goldring MB, Hancock JT. NADPH oxidase of chondrocytes contains an isoform of the gp91 phox subunit. Biochem J 1998; 329 (Pt 3): 449-51.
Moulton PJ, Hiran TS, Goldring MB, Hancock JT. Detection of protein and mRNA of various components of the NADPH oxidase complex in an immortalized human chondrocyte line. Br J Rheumatol 1997; 36: 522-9.
Clancy R, Rediske J, Koehne C, et al. Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence. Osteoarthr Cartil 2001; 9: 294-9.
Yamazaki K, Fukuda K, Matsukawa M, et al. Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. Arthritis Rheum 2003; 48: 3151-8.
Nishimura S, Akagi M, Yoshida K, et al. Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-kappaB. Osteoarthr Cartil 2004; 12: 568-76.
Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Common 1909; 263: 681-4.
Lee MS, Trindade MC, Ikenoue T, Goodman SB, Schuriman DJ, Smith RL. Regulation of nitric oxide and bcl-2 expression by shear stress in human osteoarthritic chondrocytes in vitro. J Cell Biochem 2003; 90: 80-6.
Pacquelet S, Presle N, Boileau C, et al. Interleukin 17, a nitric oxide-producing cytokine with a peroxynitrite-independent inhibitory effect on proteoglycan synthesis. J Rheumatol 2002; 29: 2602-10.
Henrotin YE, Zheng SX, Labasse AH, Deby GP, Crielaard JM, Reginster JY. Modulation of human chondrocyte metabolism by recombinant human interferon. Osteoarthr Cartil 2000; 8: 474-82.
Yasuda T, Kakinuma T, Yulovi SM, et al. COOH-terminal heparin-binding fibronectin fragment induces nitric oxide production in rheumatoid cartilage through CD44. Rheumatology (Oxford) 2004; 43: 1116-20.
Whiteman M, Spencer JP, Zhu YZ, Armstrong JS, Schantz JT. Peroxynitrite-modified collagen-II induces p38/ERK and NF-kappaB-dependent synthesis of prostaglandin E2 and nitric oxide in chondrogenically differentiated mesenchymal progenitor cells. Osteoarthr Cartil 2006; 14: 460-70.
Borderie D, Hilliquin P, Hemvann A, et al. Inhibition of inducible NO synthase by TH2 cytokines and TGF beta in rheumatoid arthritic synoviocytes: effects on nitrosothiol production. Nitric Oxide 2002; 6: 271-82.
Sanchez C, Deberg MA, Burton S, Devel. P, Reginster JY, Henrotin YE. Differential regulation of chondrocyte metabolism by oncostatin M and interleukin-6. Osteoarthr Cartil 2004; 12: 801-10.
Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthr Cartil 2002; 10: 792-8.
Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthr Cartil 2005; 13: 935-41.
Mathy-Hartert M, Burton S, Deby-Dupont G, Devel P, Reginster JY, Henrotin Y. Influence of oxygen tension on nitric oxide and prostaglandin E2 synthesis by bovine chondrocytes. Osteoarthr Cartil 2005; 13: 74-9.
Chowdhury TT, Bader DL, Lee DA. Dynamic compression counteracts EL-1beta induced iNOS and COX-2 activity by human cultured in agarose constructs. Biorheology 2006; 43: 413-29.
Cernanec JM, Weinberg JB, Batinic-Haberte I, Guilak F, Fermor B. Influence of oxygen tension on interleukin 1-induced peroxynitrite formation and matrix turnover in articular cartilage. J Rheumatol 2007; 34: 401-7.
Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186: 1-85.
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 1998; 28: 370-490.
Pe Cesare D, Sassone-Corsi P. Transcriptional regulation by cyclic AMP-responsive factors. Prog Nucleic Acid Res Mol Biol 2000; 64: 343-69.
Karin M, Liu Z, and Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240-6.
Lo YY; Cruz TF. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 1995; 270: 11727-30.
Lo YY, Conquer JA, Grinstein S, Cruz TF. Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem 1998; 69: 19-29.
Martin G, Andriamanalijaona R, Mathey-Hartert M, Henrotin Y, Pujol JP. Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthr Cartil 2005; 13: 915-24.
Mendes AF, Caramonat MM, Carvalho AP, Lopes MC. Hydrogen peroxide mediates interleukin-1beta-induced AP-1 activation in articular chondrocytes: implications for the regulation of iNOS expression. Cell Biol Toxicol 2003; 19: 203-14.
Lo YY, Wong JM, Cruz TF. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 1996; 271: 15703-7.
Li WQ, Qureshi HY, Liacini A, Dehnade F, Zafarullah M. Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med 2004; 37: 196-207.
Mendes AF, Carvalho AP, Cammona MM, Lopes MC. Role of nitric oxide in the activation of NF-kappaB, AP-1 and NOS H expression in articular chondrocytes. Inflamm Res 2002; 51: 369-75.
Mendes AF, Caramona MM, Carvalho AP, Lopes MC. Role of mitogen-activated protein kinases and tyrosine kinases, on IL-1-Induced NF-kappaB activation and NOS expression in bovine articular chondrocytes. Nitric Oxide 2002; 6: 35-44.
Mathy-Hartert M, Deby-Dupont GP, Reginster JY, Ayache N, Pujol JP, Henfotin YE. Regulation by reactive oxygen species of interleukin-1beta, nitric oxide and prostaglandin E(2) production by human chondrocytes. Osteoarthr Cartil 2002; 10: 547-55.
DelCarlo M, Loeser RF. Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-betaI. Am J Physiol Cell Physiol 2006; 290: C802-11.
Yudoh K, Nguyen T, Nakamura. H, Hongo-Masuko K, Kato T, Nishioka K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 2005; 7: R380-91.
Pufe T, Mentlein R, Tsokos M, et al. VEGF expression in adult permanent thyroid cartilage: implications for lack of cartilage ossification. Bone 2004; 35: 543-52.
Haddad JJ. Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002; 296: 847-56.
Turpaev KT. Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc.) 2002; 67: 281-92.
Hentze MW, Rouault TA, Harford JB, Klausner RD. Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science 1989; 244: 357-9.
Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999; 342 Pt 3: 481-96.
Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 1997; 94: 3633-8
Jin DY, Chae HZ, Rhee SG, Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation: J Biol Chem 1997; 272: 30952-61.
Das KC, Das CK, Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions; Biochem Biophys Res Commun 2000; 277: 443-7.
Liu H, Nishitoh H, Ichijo H, Kyriakis JM. Activation of apoptosis signal-regulating kinase I (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 2000; 20: 2198-208.
Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signalling. Oncogene 1999; 18: 6104-11.
Beraud C, Henzel WJ, Baeuerle PA. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc Natl Acad Sci U S A 1999; 96: 429-34.
Witte S, Villalba M, Bi K, Liu Y, Isakov N, Altman A. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain. J Biol Chem 2000; 275: 1902-9.
Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 2000; 60: 184-90.
Aigner T, Zhu Y, Chansky HH, Matsen FA, 3rd, Maloney WJ, Sandell LJ. Reexpression of type IIA procollagen by adult articular chondrocytes in osteoarthritic cartilage. Arthritis Rheum 1999; 42: 1443-50.
Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 1998; 41: 986-96.
Kaiser M, Haag J, Soder S, Bau B, Aigner T. Bone morphogenetic protein and transforming growth factor beta inhibitory Smads 6 and 7 are expressed in human adult normal and osteoarthritic cartilage in vivo and are differentially regulated in vitro by interleukin-1beta. Arthritis Rheum 2004; 50: 3535-40.
Bau B, Haag J, Schmid E, Kaiser M, Gebhard PM, Aigner T. Bone morphogenetic protein-mediating receptor-associated Smads as well as common Smad are expressed in human articular chondrocytes but not up-regulated or down-regulated in osteoarthritic cartilage. J Bone Miner Res 2002; 17: 2141-50.
Aigner T, Kim HA, Roach HI. Apoptosis in osteoarthritis. Rheum Dis Clin North Am 2004; 30: 639-53, xi.
Martin JA, Klingelhutz AJ, Moussavi-Harami F, Buckwalter JA. Effects of oxidative damage and telomerase activity on human articular cartilage chondrocyte senescence. J Gerontol A Biol Sci Med Sci 2004; 59: 324-37.
Blanco FJ, Guitian R, Vazquez-Martul E, de Toro FJ, Galdo F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 1998; 41: 284-9.
Hashimoto S, Takahashi K, Amiel D, Coutts RD, Lotz M. Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis. Arthritis Rheum 1998; 41: 1266-74.
Roach HI, Aigner T, Kouri JB. Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 2004; 9: 265-77.
Gebhard PM, Soder S, Bau B, Aigner T. Down-regulation of the GTPase RhoB might be involved in the pre-apoptotic phenotype of osteoarthritic chondrocytes. Front Biosci 2004; 9: 827-33.
Aigner T, Hemmel M, Neureiter D, et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001; 44: 1304-12.
Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509-14.
Prendergast GC. Actin' up: RhoB in cancer and apoptosis. Nat Rev Cancer 2001; 1: 162-8.
Liu AX, Rane N, Liu JP, Prendergast GC. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signalling in transformed cells. Mol Cell Biol 2001; 21: 6906-12.
Terkeltaub R, Johnson K, Murphy A, Ghosh S. Invited review: the mitochondrion in osteoarthritis. Mitochondrion 2002; 1: 301-19.
Maneiro E, Lopez-Armada MJ, de Andres MC, et al. Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis 2005; 64: 388-95.
Lopez-Armada MJ, Carames B, Martin MA, et al. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthr Cartil 2006; 14: 1011-22.
Almeida A, Moncada S, Bolanos JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 2004; 6: 45-51.
Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 2000; 43: 1560-70.
Tomita M, Sato EF, Nishikawa M, Yamano Y, Inoue M. Nitric oxide regulates mitochondrial respiration and functions of articular chondrocytes. Arthritis Rheum 2001; 44: 96-104.
Breimer LH. Repair of DNA damage induced by reactive oxygen species. Free Radic Res Commun 1991; 14: 159-71.
Yook YH, Kang KH, Maeng O, et al. Nitric oxide induces BNIP3 expression that causes cell death in macrophages. Biochem Biophys Res Commun 2004; 321: 298-305.
Kim HA, Song YW. Apoptotic chondrocyte death in rheumatoid arthritis. Arthritis Rheum 1999; 42: 1528-37.
Kim HA, Lee YJ, Seong SC, Choe KW, Song YW. Apoptotic chondrocyte death in human osteoarthritis. J Rheumatol 2000; 27: 455-62.
Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999; 144: 891-901.
Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-89.
Blanco FJ, Lopez-Armada MJ, Maneiro E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion 2004; 4: 715-28.
Blanco FJ, Ochs RL, Schwarz H, Lotz M. Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 1995; 146: 75-85.
Carlo MD, Jr., and Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 2003; 48: 3419-30.
Studer BK, Levicoff E, Georgescu H, Miller L, Jaffurs D, vans CH. Nitric oxide inhibits chondrocyte response to IGF-I: inhibition of IGF-IRbeta tyrosine phosphorylation. Am J Physiol Cell Physiol 2000; 279: C961-9.
Del Carlo M, Jr., and Loeser RF. Nitric-oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum 2002; 46: 394-403.
Whiteman M, Armstrong JS, Cheung NS, et al. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J 2004; 18: 1395-7.
Kuhn K, D'Lima DD, Hashimoto S, Lotz M. Cell death in cartilage. Osteoarthr Cartil 2004; 12: 1-16.
Schuessler H, Schilling K. Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol Relat Stud Phys Chem Med 1984; 45: 267-81.
Monboisse JC, Braquet P, Randoux A, Borel JP. Non-enzymatic degradation of acid-soluble calf skin collagen by superoxide ion: protective effect of flavonoids. Biochem Pharmacol 1983; 32: 53-8.
Monboisse JC, Poulin G, Braquet P, Randoux A, Ferradini C, Borel JP. Effect of oxy radicals on several types of collagen. Int J Tissue React 1984; 6: 385-90.
Monboisse V, Monboisse JC, Borel JP, Randoux A. Nonisotopic evaluation of collagen in fibroblasts cultures. Anal Biochem 1989; 176: 395-9.
Uchida K, Kato Y, Kawakishi S. A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Biochem Biophys Res Commun 1990; 169: 265-71.
Wang Y, Yang Z, Gilula LA, Zhu C. Kashin-Beck disease: radiographic appearance in the hands and wrists. Radiology 1996; 201: 265-70.
Ghio AJ, Kennedy TP, Rao G, Cooke CL, Miller MJ, Hoidal JR. Complexation of iron cadon by sodium urate crystals and gouty inflammation. Arch Biochem Biophys 1994; 313: 215-21.
Davies JM, Horwitz DA, Davies KJ. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic Biol Med 1993; 15: 637-43.
Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Thorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol Dial Transplant 1996; 11 Suppl.5: 48-53.
Sulochana KN, Ramprasad S, Coral K, et al. Glycation and glycoxidation studies in vitro on isolated human vitreous collagen. Med Sci Monit 2003; 9: BR220-4.
Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J 1987; 245: 243-50.
Ahmed MU, Thorpe SR, Baynes JW. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 1986; 261: 4889-94.
Chace KV, Carubelli R, Nordquist RE. The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch Biochem Biophys 1991; 288: 473-80.
Sajithlal GB, Chithra P, Chandrakasan G. An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen. Mol Cell Biochem 1999; 194: 257-63.
Wells-Knecht MC, Thorpe SR, Baynes JW. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry 1995; 34: 15134-41.
Glomb MA, Monnier VM. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 1995; 270: 10017-26.
Miyata T, Izuhara Y, Sakai H, Kurokawa K. Carbonyl stress: increased carbonyl modification of tissue and cellular proteins in uremia. Perit Dial Int 1999; 19 Suppl 2: S58-61.
Verzijl N, DeGroot J, Bank RA, et al. Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Matrix Biol 2001; 20: 409-17.
Schwab W, Friess U, Hempel U, et al. Immunohistochemical demonstration of -(carboxymethyl)lysine protein adducts in normal and osteoarthritic cartilage. Histochem Cell Biol 2002; 117: 541-6.
Chen AC, Temple MM, Ng DM, et al. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum 2002; 46: 3212-7.
DeGroot J, Verzijl N, Budde M, Bijlsma JW, Lafeber FP, TeKoppele JM. Accumulation of advanced glycation end products decreases collagen turnover by bovine chondrocytes. Exp Cell Res 2001; 266: 303-10.
Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 2005; 175: 8296-302.
Marcinkiewicz J, Chain BM, Olszowska E, Olszowski S, Zgliczynski JM. Enhancement of immunogenic properties of ovalbumin as a result of its chlorination. Int J Biochem 1991; 23: 1393-5.
Westman E, Lundberg K, Erlandsson Harris H. Arthritogenicity of collagen type II is increased by chlorination. Clin Exp Immunol 2006; 145: 339-45.
Deberg M, Labasse A, Christgau S, et al. New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil 2005; 13: 258-65.
Grazioli V, Schiavo R, Casari E, Marzatico F, Rodriguez y Baena R, Gaetani P. Antioxidant enzymatic activities and lipid peroxidation in cultured human chondrocytes from vertebral plate cartilage. FEBS Lett 1998; 431: 149-53.
Regan E, Flannelly J, Bowler R, et al. Extracellular superoxide dismutase and oxidant damage in osteoarthritis. Arthritis Rheum 2005; 52: 3479-91.
Kurz B, Lemke A, Kehn M, et al. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 2004; 50: 123-30.
Borsiczky B, Szabo Z, Jaberansari MT, Mack PP, Roth E. Activated PMNs lead to oxidative stress on chondrocytes: a study of swine knees. Acta Orthop Scand 2003; 74: 190-5.
Kurz B, Jost B, Schunke M. Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice. Osteoarthr Cartil 2002; 10: 119-26.
Ostalawska A, Birkner E, Wiecha M, et al. Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthr Cartil 2006; 14: 139-45.
Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ. Mitochondrial proteomic characterization of human normal articular chondrocytes. Osteoarthr Cartil 2006; 14: 507-18.
Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: the role of manganese superoxide dismatase. Free Radic Biol Med 2000; 29: 170-80.
Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PE, Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthr Cartil 2005; 13: 614-22.
Tschan T, Hoerler I, Houze Y, Winterhalter KH, Richter C, Bruckner P. Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites. J Cell Biol 1990; 111: 257-60.
Knoops B, Clippe A, Bogard C, et al. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem 1999; 274: 30451-8.
Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 1999; 45: 101-12.
Wang MX, Wei A, Yuan J, Trickett A, Knoops B, Murrell GA. Expression and regulation of peroxiredoxin 5 in human osteoarthritis. FEBS Lett 2002; 531: 359-62.
Tsuji G, Koshiba M, Nakamura H, et al. Thioredoxin protects against joint destruction in a murine arthritis model. Free Radic Biol Med 2006; 40: 1721-31.
Deahl ST, 2nd, Oberley LW, Oberley TD, Elwell JH. Immunohistochemical identification of superoxide dismutases, catalase, and glutathione-S-transferases in rat femora. J Bone Miner Res 1992; 7: 187-98.
Tsuchida S, Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol 1992; 27: 337-84.
Kurz B, Schunke M. Articular chondrocytes and synoviocytes in culture: influence of antioxidants on lipid peroxidation and proliferation. Ann Anat 1997; 179: 439-46.
Lee MM, Green FH, Schurch S, et al. Comparison of inhibitory effects of oxygen radicals and calf serum protein on surfactant activity. Mol Cell Biochem 2004; 259: 15-22.
Zafarullah M, Martel-Pelletier J, Cloutier JM, Gedamu L, Pelletier JP. Expression of c-fos, c-jun, jun-B, metallothionein and metalloproteinase genes in human chondrocyte. FEBS Lett 1992; 306: 169-72.
Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898-902.
Dombrecht EJ, De Tollenaere CB, Aerts K, et al. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation. Biochem Biophys Res Commun 2006; 348: 459-64.
Reiter RJ. Oxygen radical detoxification processes during aging: the functional importance of melatonin. Aging (Milano) 1995; 7: 340-51.
McAlindon TE, Jacques P, Zhang Y, et al. Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheum 1996; 39: 648-56.
Claassen H, Schunke M, Kurz B. Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage. Cell Tissue Res 2005; 319: 439-45.
Dai SM, Shan ZZ, Nakamura H, et al. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced downregulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum 2006; 54: 818-31.