[en] Lignocellulosic substrates are a promising alternative resource for the sustainable production of energy (biofuels), bio-based products and organic compounds. In the past, the extraction and recycling of cellulose (into fermentable glucose) constituted the central axis of lignocellulosic biorefinery processes. Degraded hemicelluloses and lignins were recovered as side-products with no possibilities of high-added value applications.
Within the context of an integrated biorefinery, and for economic reasons, the recovery and the non-energetic valorization of lignins have opened recently new horizons. Lignin is a cross-linked phenolic polymer and is considered as potential alternative to petrochemical polymers or as a source of antioxidants for cosmetics and food industry, resins, chelating agent...
As the final application of lignin depends on both extraction process and type of lignocellulosic sources, the development of fast and efficient physicochemical characterization methods is thus a prerequisite to optimize extraction processing conditions.
In this study, beech wood particles (Fagus sylvatica L.) are delignified at atmospheric pressure by a formic acid/acetic acid/water mixture. Firstly, response surface methodology is used to optimize cooking time and temperature for delignification, pulp yield and concentration of degradation products (2-furfural and 5-hydroxymethylfurfural). The results highlight that best delignification is obtained in the highest cooking times and temperatures and that 5-hydroxymethylfurfural is produced during the formic/acetic acid treatment but is also degraded into 2-furfural.
With the aim to develop an integrated biorefinery approach, multi-criteria optimization is used to find ideal cooking time and temperature (5h07, 104.2°C) leading to the maximization of delignification and pulp yield and to the minimization of 2-furfural production
Finally, physicochemical and chemical structures of extracted lignins are found dependent on treatment conditions harshness.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Simon, Mathilde ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Richel, Aurore ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Vanderghem, Caroline ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Paquot, Michel ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Language :
English
Title :
Optimization of a formic/acetic acid treatment of beech wood for lignin extraction
Publication date :
August 2012
Event name :
Belgian Biomass workshop in the frame of BERA (Belgian Energy Research Alliance)
Event place :
Louvain-la-Neuve, Belgium
Event date :
27-28 août 2012
By request :
Yes
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.