[en] Crop models describe the growth and development of a crop interacting with its surrounding agro-environmental conditions (soil, climate and close conditions of the plant). However, the implementation of such models remains difficult because of the high number of explanatory variables and parameters. It often happens that important discrepancies appear between measured and simulated values. This article aims to highlight the different sources of uncertainty related to the use of crop models, as well as the actual methods that allow to compensate or, at least, to consider these sources of error during the model result analysis.
This article presents a literature review that firstly synthetises the general mathematical structure of crop models. The main criteria for evaluating crop models are then described. Finally, several methods used for improving models are given. Parameter estimation methods, including frequentist and Bayesian approaches, are presented and data assimilation methods are reviewed.
Disciplines :
Computer science Agriculture & agronomy
Author, co-author :
Dumont, Benjamin ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Vancutsem, Françoise ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Seutin, Benoit ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Bodson, Bernard ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Destain, Jean-Pierre ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Destain, Marie-France ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Language :
English
Title :
Simulation de la croissance du blé à l’aide de modèles écophysiologiques : Synthèse bibliographique des méthodes, potentialités et limitations.
Alternative titles :
[en] Wheat growth simulation using crop models: A review of the methods, potential and limitations.
Publication date :
2012
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Volume :
16
Issue :
3
Pages :
376-386
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Suivi en temps réel de l’environnement d’une parcelle agricole par un réseau de micro-capteurs en vue d’optimiser l’apport en engrais azotés
Funders :
SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement
Basso B. & Ritchie J.T., 2005. Impact of animal manure, compost and inorganic fertilizer on nitrate leaching and yield in a six-year maize alfalfa rotation. Agric. Ecosyst. Environ., 108, 329-341.
Basso B. et al., 2009. Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in Southern Italy. J. Agron. Crop Sci., 195, 301-312.
Basso B. et al., 2010. Long-term wheat response to nitrogen in a rainfed Mediterranean environment: field data and simulation analysis. Eur. J. Agron., 33, 132-138.
Beaudoin N. et al., 2008. Evaluation of the soil crop model STICS over 8 years against the "on farm" database of Bruyères catchment. Eur. J. Agron., 29, 46-57.
Bechini L., Bocchi S., Maggiore T. & Confalonieri R., 2006. Parameterization of a crop growth and development simulation model at sub model component level. An example for winter wheat (Triticum aestivum L.). Environ. Modell. Softw., 21, 1042-1054.
Bellochi G., Rivington M., Donatelli M. & Matthews K., 2009. Validation of biophysical models: issues and methodologies. A review. Agron. Sustainable Dev., 30, 109-130.
Brisson N. et al., 1998. STICS: a generic model for the simulation of crops and their water and nitrogen balances. Theory and parameterization applied to wheat and corn. Agronomie, 18, 311-346.
Brisson N. et al., 2002. STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 22, 69-82.
Brisson N. et al., 2003. An overview of the crop model STICS. Eur. J. Agron., 18, 309-332.
Brisson N., Launay M., Mary B. & Beaudoin N., eds, 2008. Conceptual basis, formalisations and parameterization of the STICS crop model. Versailles, France: Éditions Quæ.
De Wit A.J.W. & Van Diepen C.A., 2007. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol., 146, 38-56.
Flenet F., Villon P. & Ruget F., 2004. Methodology of adaptation of the STICS model to a new crop: spring linseed (Linum usitatissimum L.). Agronomie, 24, 367-381.
Génard M., Jeuffroy M.H., Jullien A. & Quilot B., 2006. Les modèles en écophysiologie pour l'action en agronomie et la création variétale. Versailles, France: Éditions Quæ.
Hansen S., Jensen H.E., Nielsen N.E. & Swenden H., 1990. Daisy, a soil plant system model. Danish simulation model for transformation and transport of energy and matter in the soil plant atmosphere system. Copenhagen: The National Agency for Environment Protection.
Hastings W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Houlès V. et al., 2004. Evaluation of the ability of the crop model STICS to recommend nitrogen fertilisation rates to agro-environmental criteria. Agronomie, 24, 339-349.
Jones C.A. & Kiniry J.R., 1986. CERES-Maize, a simulation model of maize growth and development. College Station, TX, USA: Texas A&M University Press.
Jongschaap R.E.E., 2007. Sensitivity of a crop growth simulation model to variation in LAI and canopy nitrogen used for run-time calibration. Ecol. Modell., 200, 89-98.
Launay M., Flenet F., Ruget F. & Garcia de Cortazar Atauri I., 2005. Généricité et méthodologie d'adaptation de STICS à de nouvelles cultures. In: Actes du Séminaire STICS, mars 2005, Carry-le-Rouet, France.
Lawless C., Semenov M.A. & Jamieson P.D., 2008. Quantifying the effect of uncertainty in soil moisture characteristics on plant growth using a crop simulation model. Field Crops Res., 106(2), 138-147.
Loague K. & Green R.E., 1991. Statistical and graphical method for evaluating solute transport models: overview and application. J. Contam. Hydrol., 7, 51-73.
Loyce C. & Wery J., 2006. Les outils des agronomes pour l'évaluation et la conception des systèmes de culture. Versailles, France: Éditions Quæ.
Makowski D. & Wallach D., 2001a. How to improve model-based decision rules for nitrogen fertilization. Eur. J. Agron., 15(3), 197-208.
Makowski D., Wallach D. & Meynard J.M., 2001b. Statistical methods for predicting responses to applied nitrogen and calculating optimal nitrogen rates. Agron. J., 93, 531-539.
Makowski D. & Wallach D., 2002. It pays to base parameter estimation on a realistic description of model errors. Agronomie, 22, 179-189.
Makowski D. et al., 2006. Parameter estimation for crop models. In: Wallach D., Makowski D. & Jones J.W. Working with dynamic crop models. Evaluation, analysis, parameterization, and applications. Amsterdam, The Netherlands: Elsevier.
Metropolis N. et al., 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087-1092.
Naud C., Makowski D. & Jeuffroy M.H., 2008. Is it useful to combine measurements taken during the growing season with a dynamic model to predict the nitrogen status of winter wheat. Eur. J. Agron., 28, 291-300.
Ritchie J.T. & Otter S., 1984. Description and performance of CERES-Wheat, a user oriented wheat yield model. Temple, TX, USA: USDA-ARS-SR Grassland Soil and Water Research Laboratory.
Ruget F., Brisson N., Delécolle R. & Faivre R., 2002. Sensitivity analysis of a crop simulation (STICS) in order to determine accuracy needed for parameters. Agronomie, 22, 133-158.
Ruget F., Stager S., Volaire F. & Lelievre F., 2009. Modelling tiller density, growth, and yield of Mediterranean perennial grasslands with STICS. Crop Sci., 49(6), 2379-2385.
Sinclair T.R. & Seligman N.A., 2000. Criteria for publishing papers on crop modeling. Field Crops Res., 68, 165-172.
Singh A.K., Tripathy R. & Chopra U.K., 2008. Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop. Agric. Water Manage., 95, 776-786.
Van Diepen C.A., Wolf J., Van Keulen H. & Rappoldt C., 1989. WOFOST: a simulation model of crop production. Soil Use Manage., 5, 16-24.
Varella H., Guérif M. & Buis S., 2010. Global sensitivity analysis measures the quality of parameter estimation: the case of soil parameters and a crop model. Environ. Modell. Softw., 25, 310-319.
Vrugt J., ter Braak C., Gupta H. & Robinson B., 2009. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling. Stochastic Environ. Res. Risk Assess., 23.
Wallach D. et al., 2001. Parameter estimation for crop models: a new approach and application to a corn model. Agron. J., 93, 757-766.
Wallach D., Makowski D. & Jones J.W., 2006. Working with dynamics crop models. Evaluation, analysis, parametrization and applications. Amsterdam, The Netherlands: Elsevier.
Wallach D. et al., 2011. A package of parameter estimation methods and implementation for the STICS crop-soil model. Environ. Modell. Softw., 26, 386-394.
Weir A.H., Bragg P.L., Porter J.R. & Rayner J.H., 1984. A winter wheat crop simulation model without water or nutrient limitations. J. Agric. Sci., 102, 371-382.
Weiss A. & Wilhem W.W., 2006. The circuitous path to the comparison of simulated values from crop models with field observations. J. Agric. Sci., 144, 475-488.
William J.R., Jones C.A., Kiniry J.R. & Spanel D.A., 1989. The EPIC crop growth model. Trans. ASAE, 32, 497-511.
Yuping M. et al., 2008. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data. Int. J. Appl. Earth Obs. Geoinf., 10, 426-437.
Zadoks J.C., Chang T.T. & Konzak C.F., 1974. A decimal code for the growth stages of cereals. Weed Res., 14, 415-421.