[en] CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere, the ocean, and the terrestrial biosphere on timescales of a few centuries. However, a sizeable fraction of the CO2 remains in the atmosphere, awaiting a return to the solid earth by much slower weathering processes and deposition of CaCO3. Common measures of the atmospheric lifetime of CO2, including the e-folding time scale, disregard the long tail. Its neglect in the calculation of global warming potentials leads many to underestimate the longevity of anthropogenic global warming. Here, we review the past literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial results from a model intercomparison project on this topic. The models agree that 20–35% of the CO2 remains in the atmosphere after equilibration with the ocean (2–20 centuries). Neutralization by CaCO3 draws the airborne fraction down further on timescales of 3 to 7 kyr.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Archer, David; University of Chicago > Department of Geophysical Sciences
Eby, Michael; University of Victoria > School of Earth and Ocean Sciences
Brovkin, Victor; Max Planck Institute for Meteorology
Ridgwell, Andy; University of Bristol > School of Geographical Sciences
Cao, Long; Carnegie Institution > Department of Global Ecology
Mikolajewicz, Uwe; Max Planck Institute for Meteorology
Caldeira, Ken; Carnegie Institution > Department of Global Ecology
Matsumoto, Katsumi; University of Minnesota > Department of Geology and Geophysics
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Montenegro, Alvaro; University of Victoria > School of Earth and Ocean Sciences
Tokos, Kathy; University of Minnesota > Department of Geology and Geophysics
Language :
English
Title :
Atmospheric Lifetime of Fossil Fuel Carbon Dioxide
Publication date :
2009
Journal title :
Annual Review of Earth and Planetary Sciences
ISSN :
0084-6597
Publisher :
Annual Reviews, Palo Alto, United States - California
I am pleased to provide you complimentary one-time access to my Annual Reviews article as a PDF file (http://arjournals.annualreviews.org/eprint/TXVr5xrStR8vCEuTmECx/full/10.1146/annurev.earth.031208.100206), for your own personal use. Any further/multiple distribution, publication, or commercial usage of this copyrighted material requires submission of a permission request addressed to the Annual Reviews Permissions Department, email permissions@AnnualReviews.org.
Archer D, Kheshgi H, Maier-Riemer E. 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett. 24:405-8
Archer D, Martin P, Buffett B, Brovkin V, Rahmstorf S, Ganopolski A. 2004. The importance of ocean temperature to global biogeochemistry. Earth Planet. Sci. Lett. 222:333-48
Archer DE. 1996. A data-driven model of the global calcite lysocline. Glob. Biogeochem. Cycles 10:511-26
Bala G, Caldeira K, Mirin A, Wickett M, Delira C. 2005. Multicentury changes to the global climate and carbon cycle: Results from a coupled climate and carbon cycle model. J. Clim. 18:4531-44
Berner RA. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. Oxford: Oxford Univ. Press. 150 pp.
Berner RA, Kothavala Z. 2001. GEOCARB III: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 301:182-204
Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641-83
Broecker WS, Takahashi T. 1978. Neutralization of fossil fuel CO 2 by marine calcium carbonate. In The Fate of Fossil Fuel CO 2 in the Oceans, ed. NR Andersen, A Malahoff, pp. 213-48. New York: Plenum
Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V. 2002. Carbon cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Glob. Biogeochem. Cycles 16:1139
Brovkin V, Ganopolski A, Archer D, Rahmstorf S. 2007. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22:PA4202
Caldeira K, Kasting JF. 1992. The life span of the biosphere revisited. Nature 360:721-23
Caldeira K, Kasting JF. 1993. Insensitivity of global warming potentials to carbon-dioxide emission scenarios. Nature 366:251-53
Cao L, Eby M, Ridgwell A, Caldeira K, Archer D, et al. 2008. The importance of ocean transport in the fate of anthropogenic CO2. Biogeosci. Discuss. 5:4521-57
Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, et al. 2001. Dynamic responses of global terrestrial ecosystems to changes in CO2 and climate. Glob. Change Biol. 7:357-73
Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, et al. 2007. Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis, ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, et al., pp. 499-587. Cambridge, UK: Cambridge Univ. Press
Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ. 2009. Lifetime of anthropogenic climate change: millennial time-scales of potential CO2 and surface temperature perturbations. J. Clim. In press
Edwards NR, Marsh R. 2005. Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Clim. Dyn. 24:415-33
Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35:837-43
Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, et al. 2006. Climate-carbon cycle feedback analysis: Results from C4MPI model intercomparison. J. Clim. 19:3337-53
Frolking S, Roulet NT, Moore TR, Richard JPH, Lavoie M, Muller SD. 2001. Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479-98
Gaffin SR, O'Neill BC, Oppenheimer M. 1995. Comment on "The lifetime of excess atmospheric carbon dioxide" by Berrien Moore III and B.H. Braswell. Glob. Biogeochem. Cycles 9:167-69
Gaffin SR. 1997. Measuring time in the greenhouse, an editorial essay. Clim. Change 37:491-503
Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M. 1998. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 371:323-26
Gavrilov AV, Romanovskii XN, Romanovsky VE, Hubberten HW, Tumskoy VE. 2003. Reconstruction of ice complex remnants on the eastern Siberian Arctic Shelf. Permafr. Periglac. Process. 14:187-98
Goodwin P, Williams RG, Follows MJ, Dutkiewicz S. 2007. The ocean-atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales. Glob. Biogeochem. Cycles 21:GB1014
Jacobson MZ. 2005. Correction to "Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming." J. Geophys. Res. 110:D14105
Keeling CD, Bacastow RB. 1977. Impact of industrial gases on climate. In Energy and Climate: Studies in Geophysics, pp. 72-95. Washington, DC: Nat. Acad. Sci. USA
Kennett JP, Stott LD. 1991. Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:319-22
Kheshgi HS, Archer DE. 2004. A nonlinear convolution model for the evasion of CO2 injected into the deep ocean. J. Geophys. Res. 109:C02007
Lal R, Kimble JMH, Eswaran H, Stewart BA, eds. 2000. Global Climate Change and Pedogenic Carbonates. Boca Raton, FL: CRC Press
Lawrence DM, Slater AG. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32:L24401
Lenton TM, Britton C. 2006. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob. Biogeochem. Cycles 20:GB3009
Maier-Reimer E, Hasselmann K. 1987. Transport and storage of CO 2 in the ocean - an inorganic ocean-circulation carbon cycle model. Clim. Dyn. 2:63-90
Maier-Reimer E, Mikolajewicz U, Hasselmann K. 1993. Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J. Phys. Oceanogr. 23:731-57
Matsumoto K, Tokos K, Price A, Cox S. 2008. First description of the Minnesota Earth System Model for ocean biogeochemistry (MESMO 1.0). Geosci. Model Dev. 1:1-15
Meissner KJ, Weaver AJ, Matthews HD, Cox PM. 2003. The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim. Dyn. 21:515-37
Meissner KJ, Eby M, Weaver AJ, Saenko OA. 2008. CO2 threshold for millennial scale oscillations in the climate system: implications for the carbon cycle and global warming scenarios. Clim. Dyn. 30:161-74
Mikolajewicz U, Groger M, Maier-Reimer E, Schurgers G, Vizcaino M, Winguth AME. 2007. Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim. Dyn. 28:599-631
Montenegro A, Brovkin V, Eby M, Archer D, Weaver AJ. 2007. Long term fate of anthropogenic carbon. Geophys. Res. Lett. 34:L19707
Moore B, Braswell BH. 1994. The lifetime of excess atmospheric carbon-dioxide. Glob. Biogeochem. Cycles 8:23-38
Orr JC. 1999. On ocean carbon-cycle model comparison. Tellus 51:509-10
Pagani M, Caldeira K, Archer D, Zachos JC. 2006. An ancient carbon mystery. Science 314:1556-57
Plattner G-K, Knutti R, Joos F, Stocker TF, von Bloh W, et al. 2008. Long-term climate commitments projected with climate-carbon cycle models. J. Clim. 21:2697-710
Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, et al. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922-25
Ridgwell A. 2007. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22:PA4102
Ridgwell A, Hargreaves JC. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth System Model. Glob. Biogeochem. Cycles 21:GB2008
Ridgwell A, Hargreaves JC, Edwards NR, Annan JD, Lenton TM, et al. 2007. Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences 4:87-104
Ridgwell A, Zeebe RE. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234:299-315
Roeckner E, Arpe K, Bengtsson L, Brinkop S, Düemenil L, et al. 1992. Simulation of the present-day climate with the ECHAM model: impact of the model physics and resolution. MPI Rep. 93. Max-Planck-Inst. Meteorol., Hamburg
Schmittner A, Oschlies A, Matthews HD, Galbraith ED. 2008. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob. Biogeochem. Cycles 22:GB1013
Shaffer G, Sarmiento JL. 1995. Biogeochemical cycling in the global ocean. 1. A new, analytical model with continuous vertical resolution and high-latitude dynamics. J. Geophys. Res. 100:2659-72
Siegenthaler U, Oeschger H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B:140-54
Singarayer JS, Richards DA, Ridgwell A, Valdes PJ, Austin WEN, Beck JW. 2008. An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophys. Res. Lett. 35:L14707
Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9:161-85
Sundquist ET. 1990. Influence of deep-sea benthic processes on atmospheric CO2. Philos. Trans. R. Soc. London Ser. A 331:155-65
Tans PP, Fung IY, Takahashi T. 1990. Observational constraints on the global atmospheric carbon dioxide budget. Science 247:1431-38
Tyrrell T, Shepherd JG, Castle S. 2007. The long-term legacy of fossil fuels. Tellus 59:664-72
Walker JCG, Hays PB, Kasting JF. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86:9776-82
Walker JCG, Kasting JF. 1992. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. (Glob. Planet. Change Sect.) 97:151-89
Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, et al. 2001. The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos.-Ocean 39:361-428
Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, et al. 2007. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim. Past 3:51-64
Winguth AME, Heimann M, Kurz KD, Maier-Reimer E, Mikolajewicz U, Segschneider J. 1994. El Nino-Southern Oscillation related fluctuations of the marine carbon cycle. Glob. Biogeochem. Cycles 8:39-65
Zeebe RE, Wolf-Gladrow DA. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. New York: Elsevier