carapidae; sound production; sonic muscle; sonic mechanism; swimbladder
Abstract :
[en] Fish sonic swimbladder muscles are the fastest muscles in vertebrates and have fibers with numerous biochemical and structural adaptations for speed. Carapid fishes produce sounds with a complex swimbladder mechanism, including skeletal components and extrinsic sonic muscle fibers with an exceptional helical myofibrillar structure. To study this system we stimulated the sonic muscles, described their insertion and action and generated sounds by slowly pulling the sonic muscles. We find the sonic muscles contract slowly, pulling the anterior bladder and thereby stretching a thin fenestra. Sound is generated when the tension trips a release system that causes the fenestra to snap back to its resting position. The sound frequency does not correspond to the calculated resonant frequency of the bladder, and we hypothesize that it is determined by the snapping fenestra interacting with an overlying bony swimbladder plate. To our knowledge this tension release mechanism is unique in animal sound generation.
Disciplines :
Zoology
Author, co-author :
Parmentier, Eric ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Morphologie fonctionnelle et évolutive
Lagardere, J. P.
Braquegnier, J. B.
Vandewalle, Pierre ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Morphologie fonctionnelle et évolutive
Fine, M. L.
Language :
English
Title :
Sound production mechanism in carapid fish: first example with a slow sonic muscle
Publication date :
01 August 2006
Journal title :
Journal of Experimental Biology
ISSN :
0022-0949
eISSN :
1477-9145
Publisher :
Company Of Biologists Ltd, Cambridge, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Akamatsu, T., Okumura, T., Novarini, N. and Yan, H. Y. (2002). Empirical refinements applicable to the recording of fish sounds in small tanks. J. Acoust. Soc. Am. 112, 3073-3082.
Alexander, R. McN. (1966). Physical aspects of swimbladder function. Biol. Rev. 41, 141-176.
Appelt, D., Shen, V. and Franzini-Amstrong, C. (1991). Quantitation of Ca ATPase, feet and mitochondria in super fast muscle fibers from the toadfish, Opsanus tau. J. Muscle Res. Cell Motil. 12, 543-552.
Barimo, J. F. and Fine, M. L. (1998). Relationship of swim-bladder shape to directionality of underwater sound in the oyster toadfish. Can. J. Zool. 76, 134-143.
Bass, A. H. and Marchaterre, M. A. (1989). Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. J. Comp. Neurol. 286, 141-153.
Bennet-Clark, H. C. (1997). Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. J. Exp. Biol. 200, 1681-1694.
Bennet-Clark, H. C. (1999). Resonators in insect sound production: how insects produce loud pure-tone songs. J. Exp. Biol. 202, 3347-3357.
Bennet-Clark, H. C. and Daws, A. G. (1999). Transduction of mechanical energy into sound energy in the cicada Cyclochila australasiae. J. Exp. Biol. 202, 1803-1817.
Bennet-Clark, H. C. and Young, D. (1992). A model of the mechanism of sound production in cicadas. J. Exp. Biol. 173, 15-41.
Bennet-Clark, H. C. and Young, D. (1994). The scaling of song frequency in cicadas. J. Exp. Biol. 191, 291-294.
Bradbury, J. W. and Vehrenkamp, S. L. (1998). Principles of Animal Communication. Sunderland: Sinauer Associates.
Carlson, B. A. and Bass, A. H. (2000). Sonic / vocal motor pathways in squirrelfish (Teleostei, Holocentridae). Brain Behav. Evol. 56, 14-28.
Connaughton, M. A. (2004). Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. J. Exp. Biol. 207, 1643-1654.
Connaughton, M. A., Fine, M. L. and Taylor, M. H. (1997). The effects of seasonal hypertrophy and atrophy on fiber morphology, metabolic substrate concentration and sound characteristics of the weakfish sonic muscle. J. Exp. Biol. 200, 2449-2457.
Connaughton, M. A., Fine, M. L. and Taylor, M. H. (2002). Weakfish sonic muscle: influence of size, temperature and season. J. Exp. Biol. 205, 2183-2188.
Connaughton, M. A., Taylor, M. H. and Fine, M. L. (2000). Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. J. Exp. Biol. 203, 1503-1512.
Courtenay, W. R. and McKittrick, F. A. (1970). Sound-producing mechanisms in carapid fishes, with notes on phylogenetic implications. Mar. Biol. 7, 131-137.
Demski, L. S., Gerald, J. W. and Popper, A. N. (1973). Central and peripheral mechanisms of teleost sound production. Am. Zool. 13, 1141-1167.
Eichelberg, H. (1976). The fine structure of the drum muscles of the tigerfish, Therapon jarbua, as compared with the trunk musculature. Cell Tissue Res. 174, 453-463.
Evans, R. R. (1973). The swimbladder and associated structures in western Atlantic sea robins (Triglidae). Copeia 1973, 315-321.
Feher, J. J., Waybright, T. D. and Fine, M. L. (1998). Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. J. Muscle Res. Cell Motil. 19, 661-674.
Fine, M. L., Burns, N. M. and Harris, T. M. (1990). Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Can. J. Zool. 68, 1374-1381.
Fine, M. L., Bernard, B. and Harris, T. M. (1993). Functional morphology of toad fish sonic muscle fibers: relationship to possible fiber division. Can. J. Zool. 71, 2262-2274.
Fine, M. L., Malloy, K. L., King, C. M., Mitchell, S. L. and Cameron, T. M. (2001). Movement and sound generation by the toadfish swimbladder. J. Comp. Physiol. A 187, 371-379.
Fine, M. L., Schrinel, J. and Cameron, T. M. (2004). The effect of loading on disturbance sounds of the Atlantic croaker Micropagonius undulatus: air vs. water. J. Acoust. Soc. Am. 116, 1271-1275.
Gainer, H., Kusano, K. and Mathewson, R. F. (1965). Electrophysiological and mechanical properties of squirrelfish sound-producing muscle. Comp. Biochem. Physiol. 14, 661-671.
Greene, C. W. (1924). Physiological reactions and structures of the vocal apparatus of the California singing fish Porichythys notatus. Am. J. Physiol. 70, 496-499.
Hamoir, G. and Focant, B. (1981). Proteinic differences between the sarcoplasmic reticulums of the superfast swimbladder and the fast skeletal muscles of the toadfish Opsanus tau. Mol. Physiol. 1, 353-359.
Hawkins, A. D. and Myrberg, A. A. (1983). Hearing and sound communication underwater. In Bioacoustics, A Comparative Approach (ed. B. Lewis), pp. 347-405. London: Academic.
Howes, G. J. (1992). Notes on the anatomy and classification of ophidiiforme fishes with particular reference to the abyssal genus Acanthonus Günther, 1878. Bull. Br. Mus. 58, 95-131.
Jones, F. R. H. and Marshall, N. B. (1953). The structure and functions of the Teleostean swimbladder. Biol. Rev. 28, 16-83.
Ladich, F. and Fine, M. (2006). Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In Fish Communication (ed. F. Ladich, S. P. Collin, P. Moller and B. G. Kapoor), pp. 1-43. USA: Science Publisher.
Lagardère, J. P., Millot, S. and Parmentier, E. (2005). Aspects of sound communication in the pearl fish Carapus boraborensis and Carapus homei (Carapidae). J. Exp. Zool. A 303, 1066-1074.
Loesser, K. E., Rafi, J. and Fine, M. L. (1997). Embryonic, juvenile and adult development of the toadfish sonic muscle. Anat. Rec. 249, 469-477.
Mann, D. A., Bowers-Altman, J. and Rountree, R. A. (1997). Sounds produced by the striped cusk-eel Ophidion marginatum (Ophidiidae) during courtship and spawning. Copeia 1997, 610-612.
Ono, R. D. and Poss, S. G. (1982). Structure and innervation of the swim bladder musculature in the weakfish, Cynoscion regalis (Teleostei: Sciaenidae). Can. J. Zool. 60, 1955-1967.
Parmentier, E. and Diogo, R. (2006). Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In Fish Communication (ed. F. Ladich, S. P. Collin, P. Moller and B. G. Kapoor), pp. 43-68. USA: Science Publisher.
Parmentier, E. and Vandewalle, P. (2003). Morphological adaptations of Pearlfish (Carapidae) to their various habitats. In Fish Adaptations (ed. A. L. Val and B. G. Kapoor), pp. 261-276. India: Oxford & IBH.
Parmentier, E. and Vandewalle, P. (2005). Further insight on the Carapini - holothurian relationships. Mar. Biol. 146, 455-465.
Parmentier, E., Vandewalle, P. and Lagardère, J. P. (2003a). Sound producing mechanisms and recordings in three Carapidae species. J. Comp. Physiol. A 189, 283-292.
Parmentier, E., Gennotte, V., Focant, B., Goffinet, G. and Vandewalle, P. (2003b). Characterisation of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proc R. Soc. Lond. B Biol. Sci. 270, 2301-2308.
Parmentier, E., Fine, M. L., Vandewalle, P., Ducamp, J. J. and Lagardère, J. P. (2006). Sound production in two carapids (C. acus and C. mourlani) and through the sea cucumber tegument. Acta Zool. 87, 113-119.
Parvulescu, A. (1964). The acoustic of small tanks. In Marine Bioacoustics. Vol. 2 (ed. W. N. Tavolga), pp. 7-13. New York: Pergamon Press.
Pennypacker, K. R., Fine, M. L. and Mills, R. R. (1985). Sexual differences and steroid-induced changes in metabolic activity in toadfish sonic muscle. J. Exp. Zool. 236, 259-264.
Pringle, J. W. S. (1954). A physiological analysis of cicada song. J. Exp. Biol. 31, 525-560.
Rome, L. C. and Lindstedt, S. (1998). The quest for speed: muscles built for high-frequency contractions. News Physiol. Sci. 13, 261-268.
Rome, L. C., Syme, D. A., Hollingworth, S., Lindstedt, S. L. and Baylor, S. M. (1996). The whistle and the rattle: the design of sound producing muscles. Proc. Natl. Acad. Sci. USA 93, 8095-8100.
Rome, L. C., Cook, C., Syme, D. A., Connaughton, M. A., Ashley-Ross, M., Klimov, A., Tikunov, B. and Goldman, Y. E. (1999). Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proc. Natl. Acad. Sci. USA 96, 5826-5831.
Sand, O. and Hawkins, A. (1973). Acoustic properties of the cod swimbladder. J. Exp. Biol. 58, 797-820.
Schneider, H. (1967). Morphology and physiology of sound-producing mechanisms in teleost fishes. In Marine Bio-acoustics. Vol. 2 (ed. W. N. Tavolga), pp. 135-158. Oxford: Pergamon Press.
Sprague, M. W. (2000). The single sonic muscle twitch model for the sound-production mechanism in the weakfish, Cynoscion regalis. J. Acoust. Soc. Am. 108, 2430-2437.
Sprague, M. W. and Luczkovich, J. J. (2001). Do striped cusk-eels, Ophidium marginatum produce the 'chatter' sound attributed to weakfish, Cynoscion regalis (Sciaenidae)? Copeia 2001, 854-859.
Tavolga, W. N. (1962). Mechanisms of sound production in the ariid catfishes Galeichthys and Bagre. Am. Mus. Nat. Hist. 124, 5-30.
Tavolga, W. N. (1964). Sonic characteristics and mechanisms in marine fishes. In Marine Bio-acoustics (ed. W. N. Tavolga), pp. 195-211. Oxford: Pergamon Press.
Tavolga, W. N. (1967). Underwater sound in marine biology. In Underwater Acoustics, Vol. 2 (ed. V. Albers), pp. 35-41. New York: Plenum Press.
Weston, D. (1967). Sound propagation in the presence of bladder fish. In Underwater Acoustics, Vol. 2 (ed. V. Albers), pp. 55-88. New York: Plenum Press.
Young, D. (1990). Do cicadas radiate sound through their ear drums? J. Exp. Biol. 151, 41-56.
Young, I. S. and Rome, L. C. (2001). Mutually exclusive muscle designs: the power output of the locomotory and sonic muscles of the oyster toadfish (Opsanus tau). Proc. R. Soc. Lond. B Biol. Sci. 268, 1965-1970.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.