Planetary Sciences: Solar System Objects: Titan; Planetary Sciences: Comets and Small Bodies: Aurorae; airglow; and X-ray emission; Atmospheric Composition and Structure: Airglow and aurora
Abstract :
[en] We present the first UV airglow observations of Titan's atmosphere by the Ultraviolet Imaging Spectrograph (UVIS) on Cassini. Using one spectral channel in the EUV from 561-1182 Å and one in the FUV from 1115-1913 Å, UVIS observed the disk on 13 December, 2004 at low solar activity. The EUV spectrum consists of three band systems of N[SUB]2[/SUB] (b [SUP]1[/SUP]∏[SUB]u[/SUB], b' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP], c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP] -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP]), while the FUV spectrum consists of one (a [SUP]1[/SUP]∏[SUB]g[/SUB] -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP]). Both the EUV and FUV spectra contain many N I and N II multiplets that are produced primarily by photodissociative ionization. Spectral intensities of the N[SUB]2[/SUB] c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP](v' = 0) -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP](v'' = 0-2) progression from 950-1010 Å are resolved for the first time. The UVIS observations reveal that the c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP](0) -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP] (0) vibrational band near 958 Å is weak and undetectable, and that N I multiplets near 953.2 and 964.5 Å are present instead. Magnetospheric particle excitation may be weak or sporadic, since the nightside EUV spectrum on this orbit shows no observable nitrogen emission features and only H Ly-β.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ajello, Joseph M.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Stevens, Michael H.; Space Science Division, Naval Research Laboratory, Washington, D. C., USA
Stewart, Ian; Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
Larsen, Kristopher; Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
Esposito, Larry; Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
Colwell, Josh; Science Department, Central Arizona College, Coolidge, Arizona, USA
McClintock, William; Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
Holsclaw, Greg; Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
Gustin, Jacques ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Physique des atmosphères et des environnements planétaires
Pryor, Wayne; Science Department, Central Arizona College, Coolidge, Arizona, USA)
Ajello, J. M., G. James and M. Ciocca (1998), High Resolution EUV Emission Spectroscopy of the N2 c′ v′ = 3 and 4 Levels by Electron Impact, J. Phys. B, 31, 2437.
Ajello, J. M., and M. Ciocca (1996), Fast nitrogen atoms from dissociative excitation of N2 by electron impact, J. Geophys. Res., 101, 18,953.
Ajello, J. M., and D. E. Shemansky (1985), A re-examination of important N2 cross sections by electron impact with application to the dayglow: The Lyman-Birge-Hopfield band system and NI (119.99 nm), J. Geophys. Res., 90, 9845.
Ajello, J. M., G. K. James, B. O. Franklin, and D. E. Shemansky (1989), Medium resolution studies of EUV emission from N2 by electron impact: Vibrational perturbations and cross sections of the c′ 1∑g+ and b′ 1Πg states, Phys. Rev. A., 40, 3524.
Bishop, J., and P. D. Feldman (2003), Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUV-FUV dayside nadir spectral radiance measurements, J. Geophys. Res., 108(A6), 1243, doi:10.1029/ 2001JA000330.
Bishop, J., M. H. Stevens, and P. Feldman (2007), Molecular nitrogen Carroll-Yoshino v′ = 0 fluorescence in the thermospheric dayglow as seen by the Far Ultraviolet Explorer, J. Geophys. Res., 112, A10312, doi:10.1029/2007JA012389.
Broadfoot, A. L., et al. (1981), Extreme UV observations from Voyager 1 encounter of Saturn, J. Geophys. Res., 86, 8259.
Esposito, L., et al. (2004), The Cassini Ultraviolet Imaging Spectrograph investigation, Space Sci. Rev., 115, 299.
Fischer, F., G. Stasek, and G. Schmidtke (1980), Identification of auroral EUV emissions, Geophys. Res. Lett., 7, 1003.
Hall, D., D. Shemansky, and T. Tripp (1992), A re-analysis of Voyager UVS observations of Titan, in Symposium on Titan, Eur. Space Agency Spec. Publ., 338, 69.
Holberg, J. B., B. Ali, T. E. Carone, and R. S. Polidan (1991), Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager, Astrophys. J., 375, 716.
James, G. K., J. M. Ajello, B. O. Franklin, and D. E. Shemansky (1990), Medium resolution studies of EUV emission from N2 by electron impact: The effect of predissociation on emission cross sections of the b 1Πu state', J. Phys. B., 23, 2055.
Larsen, K., J. M. Ajello, and A. I. F. Stewart (2007), Titan's nitrogen emissions: Spatial, temporal, and hemispherical distribution and variability as measured by Cassini-UVIS, Eos Trans. AGU, Fall Meet. Suppl., in press.
Lewis, B., S. Gibson, W. Zhang, H. Brion, and J. Robbe (2005), Predissociation mechanisms for the lowest 1Πu states of N2, J. Chem. Phys., 122, 144302, doi:10.1063/ 1.1869986.
Liang, M., A. Heays, B. Lewis, S. Gibson, and Y. Yung (2007), Source of nitrogen isotope anomaly in HCN in the atmosphere of Titan, Astrophys. J., 664, L115-L118, doi:10.1086/520881.
Liu, X., D. E. Shemansky, M. Ciocca, I. Kanik, and J. M. Ajello (2005), Analysis of the physical properties of the N2 c′ 1∑u+ (0)- X 1∑ g+ (0) transition, Ap. J., 623, 579.
Meier, R., J. Samson, Y. Chung, E. Lee, and S. He (1991), Production of N+* from N2 + hν: Effective EUV emission yields for laboratory data and dayglow data, Planet Space Sci., 39, 1,197.
Samson, J. A. R., Y. Chung, and E. M. Lee (1991), Excited ionic and neutral fragments produced by dissociation of the N2 + * H band, J. Chem. Phys., 95, 717.
Steffl, A. J., A. I. F. Stewart, and F. Bagenal (2004), Cassini UVIS observations of the Io plasma torus. I. Initial results, Icarus, 172, 78.
Stevens, M. (2001), The EUV airglow of Titan: Production and loss of N2 c4′ (0)-X, J. Geophys. Res., 106, 3685.
Stevens, M. H., R. R. Meier, R. Conway, and D. Strobel (1994), A resolution of the N2 Carroll-Yoshino c4′ (0)-X band problem in the Earth's atmosphere, J. Geophys. Res., 99, 417.
Strobel, D. F., and D. E. Shemansky (1982), EUV emission from Titan's upper atmosphere: Voyager 1 encounter, J. Geophys. Res., 87, 1361.
Strobel, D. F., R. R. Meier, M. E. Summers, and D. J. Strickland (1991), Nitrogen airglow sources: Comparison of Triton, Titan, and Earth, Geophys. Res. Lett., 18, 689.
Walter, C., P. C. Cosby, and H. Helm (1994), Predissociation quantum yields of singlet nitrogen, Phys. Rev. A, 50, 2930.
Winters, H. F. (1966), Ionic adsorption and dissociation cross section of nitrogen, J. Chem. Phys., 44, 1,472.
Woods, T. N., F. G. Eparvier, S. M. Bailey, P. C. Chamberlin, J. Lean, G. J. Rottman, S. C. Solomon, W. K. Tobiska, and D. L. Woodraska (2005), Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res., 110, A01312, doi:10.1029/2004JA010765.
Yung, Y., M. Allen, and J. Pinto (1984), Photochemistry of the atmosphere of Titan: Comparison between model and observations, Astrophys. J. Suppl. Ser., 55, 464.