Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism
Tenconi, Elodie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Rigali, Sébastien ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
van Wezel, G
Language :
English
Title :
Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism
Chater KF, Losick R. Mycelial life style of Streptomyces coelicolor A3(2) and its relatives. In: Shapiro JA, Dworkin M, eds. Bacteria as multicellular organisms. New York: Oxford University Press, 1997:149-82.
Flärdh K, Buttner MJ. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009; 7:36-49; PMID:19079351; http://dx.doi.org/10.1038/nrmicro1968.
Hopwood DA. Streptomyces in nature and medicine: the antibiotic makers. New York: Oxford University Press, 2007.
Sánchez S, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, et al. Carbon source regulation of antibiotic production. J Antibiot (Tokyo) 2010; 63:442-59; PMID:20664603; http://dx.doi. org/10.1038/ja.2010.78.
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33; PMID:21611665; http://dx.doi.org/10.1039/ c1np00003a.
Challis GL, Hopwood DA. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 2003; 100(Suppl 2):14555-61; PMID:12970466; http://dx.doi.org/10.1073/ pnas.1934677100.
Baltz RH. Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 2008; 8:557-63; PMID:18524678; http://dx.doi.org/10.1016/j. coph.2008.04.008.
Martín JF, Liras P. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 2010; 13:263-73; PMID:20303823; http://dx.doi.org/10.1016/j. mib.2010.02.008.
van Wezel GP, McKenzie NL, Nodwell JR. Chapter 5. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol 2009; 458:117-41; PMID:19374981; http://dx.doi.org/10.1016/S0076-6879(09)04805-8.
Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 2002; 68:4731-9; PMID:12324314; http://dx.doi. org/10.1128/AEM.68.10.4731-4739.2002.
Chen Y, Smanski MJ, Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 2010; 86:19-25; PMID:20091304; http://dx.doi.org/10.1007/s00253-009-2428-3.
Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ, van Wezel GP, et al. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 2010; 75:1133-44; PMID:20487300; http://dx.doi. org/10.1111/j.1365-2958.2009.07020.x.
van Wezel GP, Krabben P, Traag BA, Keijser BJ, Kerste R, Vijgenboom E, et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 2006; 72:5283-8; PMID:16885277; http://dx.doi.org/10.1128/AEM.00808-06.
Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 2008; 9:670-5; PMID:18511939; http://dx.doi.org/10.1038/ embor.2008.83.
Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 2006; 61:1237-51; PMID:16925557; http://dx.doi.org/10.1111/j.1365-2958.2006.05319.x.
D'Alia D, Eggle D, Nieselt K, Hu WS, Breitling R, Takano E. Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2). Microb Biotechnol 2011; 4:239-51; PMID:21342469; http://dx.doi.org/10.1111/j.1751-7915.2010.00232.x.
Hsiao NH, Söding J, Linke D, Lange C, Hertweck C, Wohlleben W, et al. ScbA from Streptomyces coelicolor A3(2) has homology to fatty acid synthases and is able to synthesize gamma-butyrolactones. Microbiology 2007; 153:1394-404; PMID:17464053; http:// dx.doi.org/10.1099/mic.0.2006/004432-0.
Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002; 209:141-8; PMID:12007797; http://dx.doi.org/10.1016/S0378-1097(02)00559-1.
Nothaft H, Dresel D, Willimek A, Mahr K, Niederweis M, Titgemeyer F. The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 2003; 185:7019-23; PMID:14617669; http://dx.doi. org/10.1128/JB.185.23.7019-7023.2003.
Nothaft H, Dresel D, Willimek A, Mahr K, Niederweis M, Titgemeyer F. The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 2003; 185:7019-23; PMID:14617669; http://dx.doi. org/10.1128/JB.185.23.7019-7023.2003.
Swiatek MA, Tenconi E, Rigali S, van Wezel GP. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 2012; 194:1136-44; PMID:22194457; http://dx.doi.org/10.1128/JB.06370-11.
Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 1999; 181:47-54; PMID:9864311.
Vogler AP, Lengeler JW. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation. Mol Gen Genet 1989; 219:97-105; PMID:2693951; http://dx.doi.org/10.1007/ BF00261163.
Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B. The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein Sci 1999; 8:596-602; PMID:10091662; http:// dx.doi.org/10.1110/ps.8.3.596.
Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, et al. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem 2006; 281:29872-85; PMID:16857666; http://dx.doi.org/10.1074/jbc.M605052200.
Bernheim NJ, Dobrogosz WJ. Amino sugar sensitivity in Escherichia coli mutants unable to grow on N-acetylglucosamine. J Bacteriol 1970; 101:384-91; PMID:4905307.
Plumbridge J. An alternative route for recycling of N-acetylglucosamine from peptidoglycan involves the N-acetylglucosamine phosphotransferase system in Escherichia coli. J Bacteriol 2009; 191:5641-7; PMID:19617367; http://dx.doi.org/10.1128/ JB.00448-09.
White RJ. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars. Biochem J 1968; 106:847-58; PMID:4866432.
van Wezel GP, Mahr K, König M, Traag BA, Pimentel-Schmitt EF, Willimek A, et al. GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 2005; 55:624-36; PMID:15659175; http://dx.doi.org/10.1111/j.1365-2958.2004.04413.x.
van Wezel GP, White J, Hoogvliet G, Bibb MJ. Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Mol Microbiol Biotechnol 2000; 2:551-6; PMID:11075931.
Kyoto Encyclopedia of Genes and Genomes (KEGG) Database [Internet]. 1995-. Release 63.0. Kyoto (Japan): Kanehisa Laboratories. [updated 2012 July 1; cited 2012 July 5]. Available from: http:// www.genome.jp/kegg-bin/show_pathway?org_ name=sco&mapno=00520.