[en] Organochlorine pesticides such as endosulfan have been shown to have both lethal and sublethal effects on amphibians. In this context, behavioral endpoints have proved their usefulness in evidencing impacts of such chemicals at environmental concentrations that do not necessarily cause mortality. The recent development of video-tracking technologies now offers the possibility of accurately quantifying locomotor behaviors. However, these techniques have not yet been applied to evaluating the toxicity of pesticides in amphibians. We therefore aimed at determining the potential toxicity of endosulfan on endpoints associated with locomotion after short-term environmental endosulfan exposure in Rana temporaria tadpoles and at using these data as warning systems for survival alterations after a longer exposure. To this end, we analyzed video-tracks of 64 tadpoles (two pesticide treatments: 5 and 50 μg L−1, one control and one solvent-control) with Ethovision XT 7 software. The highest endosulfan concentration had a significant effect on all four behavioral endpoints. Contaminated tadpoles traveled shorter distances, swam less often, at a lower mean speed, and occupied a less peripherical position than control tadpoles. The lowest endosulfan concentration had similar but lower effects, and did not affect mean speed during swimming. Survival was reduced only after a long-term exposure to endosulfan and was associated with short-term behavioral dysfunctions. These results show that endosulfan strongly affects the behavioral repertory of amphibian tadpoles, but in different ways depending on concentration, thus suggesting that the pesticide has complex modes of action. Given the importance of locomotion and space use in tadpole success in their aquatic environment, these results confirm the toxic action of endosulfan. By highlighting effects before mortality markers, video-tracking systems also show their potential as sentinels of sublethal effects of pesticides.
Centre/Unité de recherche :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Libon, Sylvie; Université de Liège - ULiège > Département de Biologie, Ecologie Evolution > Unité de Biologie du Comportement
Kestemont, Patrick; Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Research Unit in Environmental and Evolutionary Biology
Brasseur, Catherine ; Université de Liège - ULiège > Département de chimie (sciences) > GIGA-R : Laboratoire de spectrométrie de masse (L.S.M.)
Focant, Jean-François ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > GIGA-R : Laboratoire de spectrométrie de masse (L.S.M.)
Langue du document :
Anglais
Titre :
Effects of a sublethal pesticide exposure on locomotor behavior: A video-tracking analysis in larval amphibians
Date de publication/diffusion :
2013
Titre du périodique :
Chemosphere
ISSN :
0045-6535
eISSN :
1879-1298
Maison d'édition :
Elsevier Science, Oxford, Royaume-Uni
Volume/Tome :
90
Fascicule/Saison :
3
Pagination :
945-951
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
FRFC - Fonds de la Recherche Fondamentale Collective F.R.S.-FNRS - Fonds de la Recherche Scientifique
Almeida J.R., Oliveira C., Gravato C., Guilhermino L. Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology 2010, 19:1369-1381.
Amiard-Triquet C. Behavioral disturbances: the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum. Ecol. Risk Assess. 2009, 15:87-110.
APHA, 1985. Standard methods for the examination of water and wastewater, 16th ed. American Health Association, Washington, DC.
Bernabò I., Brunelli E., Berg C., Bonacci A., Tripepi S. Endosulfan acute toxicity in Bufo bufo gills: ultrastructural changes and nitric oxide synthase localization. Aquat. Toxicol. 2008, 86:447-456.
Berrill M., Coulson D., McGillivray L., Pauli B. Toxicity of endosulfan to aquatic stages of anuran amphibians. Environ. Toxicol. Chem. 1998, 17:1738-1744.
Broomhall S., Shine R. Effects of the insecticide endosulfan and presence of congeneric tadpoles on Australian treefrog (Litoria freycineti) tadpoles. Arch. Environ. Contam. Toxicol. 2003, 45:221-226.
Brunelli E., Bernabò I., Berg C., Lundstedt-Enkel K., Bonacci A., Tripepi S. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat. Toxicol. 2009, 91:135-142.
De la Colina C., Peña A., Mingorance M.D., Sanchez Rasero F. Influence of the solid-phase extraction process on calibration and performance parameters for the determination of pesticide residues in water by gas chromatography. J. Chromatogr. 1996, 733A:275-281.
Delcourt, J., Denoël, M., Ylieff, M., Poncin, P., in press. Video multitracking of fish behaviour: a review and future perspectives. Fish Fisheries. http://dx.doi.org/10.1111/j.1467-2979.2012.00462.x.
Denoël M., Bichot M., Ficetola G.F., Delcourt J., Ylieff M.Y., Kestemont P., Poncin P. Cumulative effects of a road de-icing salt on amphibian behavior. Aquat. Toxicol. 2010, 99:275-280.
Denoël M., D'Hooghe B., Ficetola G.F., Brasseur C., De Pauw E., Thomé J.P., Kestemont P. Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology 2012, 21:1240-1250.
Eddins D., Cerutti D., Williams P., Linney E., Levin E.D. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol. Teratol. 2010, 32:99-108.
Egea-Serrano A., Tejedo M., Torralva M. Behavioral responses of the Iberian waterfrog, Pelophylax perezi (Seoane, 1885), to three nitrogenous compounds in laboratory conditions. Ecotoxicology 2011, 20:1246-1257.
Ernst W.R., Jonah P., Doe K., Julien G., Hennigar P. Toxicity to aquatic organisms of off-target deposition of endosulfan applied by aircraft. Environ. Toxicol. Chem. 1991, 10:103-114.
Genuis S.J. Toxic causes of mental illness are overlooked. Neurotoxicology 2008, 29:1147-1149.
Gillardin V., Silvestre F., Dieu M., Delaive E., Raes M., Thome J.P., Kestemont P. Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture aroclor 1254. Mol. Cell. Proteomics 2009, 8:596-611.
Gosner K.L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16:183-190.
Hoke R.A., Ankley G.T. Application of frog embryo teratogenesis assay-Xenopus to ecological risk assessment. Environ. Toxicol. Chem. 2005, 24:2677-2690.
Janssens L., Stoks R. How does a pesticide pulse increase vulnerability to predation? Combined effects on behavioral antipredator traits and escape swimming. Aquat. Toxicol. 2012, 110-111:91-98.
Jones D., Hammond J., Relyea R. Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family-level sensitivity. Environ. Toxicol. Chem. 2009, 28:1939-1945.
Kang H.S., Gye M.C., Kim M.K. Effects of endosulfan on survival and development of Bombina orientalis (Boulenger) embryos. Bull. Environ. Contam. Toxicol. 2008, 81:262-265.
Lehman C.M., Williams B.K. Effects of current-use pesticides on amphibians. Ecotoxicology of Amphibians and Reptiles 2010, 167-202. SETAC, Pensacola, FL. D.W. Sparling, G. Linder, C.A. Bishop, S.K. Krest (Eds.).
Mann R.M., Hyne R.V., Choung C.B., Wilson S.P. Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ. Pollut. 2009, 157:2903-2927.
Marquis O., Millery A., Guittonneau S., Miaud C. Solvent toxicity to amphibian embryos and larvae. Chemosphere 2006, 63:889-892.
Marquis O., Saglio P., Neveu A. Effects of predators and conspecific chemical cues on the swimming activity of Rana temporaria and Bufo bufo tadpoles. Arch. Hydrobiol. 2004, 160:153-170.
Noldus Information Technology, 2009. Ethovision XT. The next generation of video tracking systems. Reference Manual Version 7.0, Wageningen, The Netherlands.
Nørum U., Friberg N., Jensen M.R., Pedersen J.M., Bjerregaard P. Behavioural changes in three species of freshwater macroinvertebrates exposed to the pyrethroid lambda-cyhalothrin: laboratory and stream microcosm studies. Aquat. Toxicol. 2010, 98:328-335.
Park D., Hempleman S.C., Propper C.R. Endosulfan exposure disrupts pheromonal systems in the red-spotted newt: a mechanism for subtle effects of environmental chemicals. Environ. Health Perspect. 2001, 109:669-673.
Porcel M., Cotes B., Campos M. Biological and behavioral effects of kaolin particle film on larvae and adults of Chrysoperla carnea (Neuroptera: Chrysopidae). Biol. Control 2011, 59:98-105.
Regester K.J., Whiles M.R., Lips K.R. Variation in the trophic basis of production and energy flow associated with emergence of larval salamander assemblages from forest ponds. Freshw. Biol. 2008, 53:1754-1767.
Rohr J.R., Elskus A.A., Shepherd B.S., Crowley P.H., McCarthy T.M., Niedzwiecki J.H., Sager T., Sih A., Palmer B.D. Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri). Environ. Toxicol. Chem. 2003, 22:2385-2392.
Scott G.R., Sloman K.A. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 2004, 68:369-392.
Scremin O.U., Chialvo D.R., Lavarello S., Berra H.H., Lucero M.A. The environmental pollutant endosulfan disrupts cerebral cortical function at low doses. Neurotoxicology 2011, 32:31-37.
Selderslaghs I.W.T., Hooyberghs J., De Coen W., Witters H.E. Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol. Teratol. 2010, 32:460-471.
Shenoy K., Cunningham B.T., Enfroe J.W.R., Crowley P.H. Growth and survival of northern leopard frog (Rana pipiens) tadpoles exposed to two common pesticides. Environ. Toxicol. Chem. 2009, 28:1469-1474.
Sparling D.W., Linder G., Bishop C.A., Krest S.K. Recent advancements in amphibian and reptile ecotoxicology. Ecotoxicology of Amphibians and Reptiles 2010, 1-11. SETAC, Pensacola, FL. D.W. Sparling, G. Linder, C.A. Bishop, S.K. Krest (Eds.).
Srivastava N., Harit G., Srivastava R. A study of physico-chemical characteristics of lakes around Jaipur. Ind. J. Environ. Biol. 2009, 30:889-894.
Stuart S.N., Chanson J.S., Cox N.A., Young B.E., Rodrigues A.S.L., Fischman D.L., Waller D.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306:1783-1786.
Tu H.T., Silvestre F., Phuong N.T., Kestemont P. Effects of pesticides and antibiotics on penaeid shrimp with special emphases on behavioral and biomarker responses. Environ. Toxicol. Chem. 2010, 29:929-938.
Tu H.T., Silvestre F., Scippo M.-L., Thome J.-P., Phuong N.T., Kestemont P. Acetylcholinesterase activity as a biomarker of exposure to antibiotics and pesticides in the black tiger shrimp (Penaeus monodon). Ecotoxicol. Environ. Saf. 2009, 72:1463-1470.
UN, 2011. Stockholm convention on persistent organic pollutants. Adoption of an Amendment to Annex A. United Nations.
Wake D.B., Vredenburg V.T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 2008, 105:11466-11473.
Weber J., Halsall C.J., Muir D., Teixeira C., Small J., Solomon K., Hermanson M., Hung H., Bidleman T. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 2010, 408:2966-2984.
Weis J.S., Smith G., Zhou T., Santiago-Bass C., Weis P. Effects of contaminants on behavior: biochemical mechanisms and ecological consequences. Bioscience 2001, 51:209-217.
Winandy L., Denoël M. The use of visual and automatized behavioral markers to assess methodologies: a study case on PIT-tagging in the alpine newt. Behav. Res. Methods 2011, 43:568-576.