No document available.
Abstract :
[en] A series of well defined poly(methyl methacrylate) (PMMA)-b-poly(n-butyl acrylate) (PnBA)-b-PMMA triblock copolymers (MnBM) has been synthesized by transalcoholysis of PMMA-b-poly(tert-butylacrylate) (PtBA)-b-PMMA precursors (MTM) by n-butanol. Phase separation is observed for all the investigated triblock copolymers, which contain PMMA outer blocks in the 5000-50 000 molecular weight (MW) range and PnBA inner blocks with MW in the 100 000-200 000 range. Although the ultimate tensile properties of these MnBM triblock copolymers are poor compared to traditional diene-based TPEs (SBS and SIS), they are much better than those ones reported for PMMA-b-poly(isooctyl acrylate) (PIOA)-b-PMMA triblocks (MIM). A reasonable explanation for this observation is found in the average molecular weight between chain entanglements (Me) that has been estimated to be 28 000 for the central PnBA rubbery block, which is consistently much smaller than for PIOA (59 000) and substantially higher than Me for polybutadiene (1700) and polyisoprene (6100). The tensile behavior of MnBM copolymers cannot be fitted by either a simple elastomer model free from chain entanglements (suitable to MIM) or by a "filler" modified rubber model (suitable for diene-based TPEs), supporting the hypothesis that the mechanical properties of the investigated (meth)acrylate thermoplastic elastomers are significantly affected by any change in Me of the central acrylate block. Viscoelastic analysis shows that MnBM triblocks are of higher complex viscosity than the SBS and SIS analogs, leading to a shift in the order-disorder transition temperature to much higher temperature, unless the outer PMMA blocks are of very low molecular weight (5000).
Scopus citations®
without self-citations
56