AC susceptibility; Cryogenic conditions; magnetic measurements; superconductors; temperature measurement
Abstract :
[en] This work describes the design and realisation of an apparatus to measure simultaneously the AC magnetic properties and the temperature distribution on the top surface of bulk superconducting samples (up to 32 mm in diameter) in cryogenic conditions (temperature range 78-120 K). First we describe the experimental set-up used for simultaneous thermal and magnetic characterization of the sample. Next we describe the practical considerations required for generating the large AC magnetic fields, possibly in the presence of DC fields. In the third section we present a custom-made high speed data acquisition system for replacing the laboratory devices (DC voltmeter and AC lock-in amplifiers) when both temperature and magnetic data need to be recorded at high a sampling rate. The performances and limitations of the system are discussed.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Disciplines :
Electrical & electronics engineering
Author, co-author :
Laurent, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique, microsystèmes, mesures et instrumentation
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
AC Magnetic Measurements on Superconductors: Design of a Device for Magneto-Thermal Measurements
Publication date :
2013
Main work title :
Advanced Instrument Engineering: Measurement, Calibration, and Design
Brentari, E. G., & Smith, R. V. (1958). Nucleate and film pool boiling design correlations for 02, N2, H2 and He. Advances in Cryogenic Engineering, 10, 325-341.
Campbell, A. M., & Cardwell, D. A. (1997). Bulk high-temperature superconductors for magnet applications. Cryogenics, 37, 567-575. doi:10.1016/S0011-2275(97)00068-4.
Fujishiro, H., Kawachi, M., Kaneyama, M., Fujiwara, A., Tateiwa, T., & Oka, T. (2006). Heat propagation analysis in HTSC bulks during pulse field magnetization. Superconductor Science and Technology, 19, 540-544. doi:10.1088/0953-2048/19/7/S23.
Goldfarb, R. B., Lelental, M., & Thompson, C. A. (1991). Alternating-field susceptometry and magnetic susceptibility of superconductors. In Hein, R. A., Francavilla, T. L., & Liebenberg, D. H. (Eds.), Magnetic susceptibility of superconductors and other spin systems (pp. 49-80). New York, NY: Plenum.
Gömöry, F. (1997). Characterization of hightemperature superconductors by AC susceptibility measurements. Superconductor Science and Technology, 10, 523-542. doi:10.1088/0953-2048/10/8/001.
Gömöry, F., Lobotka, P., & Fröhlich, K. (1994). Variable temperature insert for a.c. susceptibility measurements at a.c. field amplitudes up to 0.1 T. Cryogenics, 34, 837-838. doi:10.1016/0011-2275(94)90070-1.
Hari Babu, N., Iida, K., Shi, Y., & Cardwell, D. A. (2006). Processing of high performance (LRE)-Ba-Cu-O large, single-grain bulk superconductors in air. Physica. C, Superconductivity, 445-448, 286-290. doi:10.1016/j.physc.2006.04.067.
Laurent, P., Fagnard, J. F., Vanderheyden, B., Hari Babu, N., Cardwell, D. A., Ausloos, M., & Vanderbemden, P. (2008). An ac susceptometer for the characterization of large, bulk superconducting samples. Measurement Science & Technology, 19, 085705. doi:10.1088/0957-0233/19/8/085705.
Lousberg, G. P., Fagnard, J. F., Noudem, J. G., Ausloos, M., Vanderheyden, B., & Vanderbemden, P. (2009). Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor. Superconductor Science and Technology, 22, 045009. doi:10.1088/0953-2048/22/4/045009.
Nikolo, M. (1995). Superconductivity: a guide to alternating current susceptibility measurements and alternating current susceptometer design. American Journal of Physics, 63, 57-65. doi:10.1119/1.17770.
Sundqvist, B. (1992). Thermal diffusivity and thermal conductivity of chromel, alumel and constantan in the range 100-450 K. Journal of Applied Physics, 72, 539-545. doi:10.1063/1.351885.
Trojanowski, S., & Ciszek, M. (2007). Race-track coils for measurements of AC energy losses in high temperature superconducting tapes. Prz Elektrotech, 83, 26.
Vanderbemden, P. (1998). Design of an AC susceptometer based on a cryocooler. Cryogenics, 38, 839-842. doi:10.1016/S0011-2275(98)00063-0.
Vanderbemden, P., Laurent, P., Fagnard, J. F., Ausloos, M., Hari Babu, N., & Cardwell, D. A. (2010). Magneto-thermal phenomena in bulk high temperature superconductors subjected to applied AC magnetic fields. Superconductor Science and Technology, 23, 075006. doi:10.1088/0953-2048/23/7/075006.
Yamaguchi, K., Ogawa, J., Sekizawa, S., & Tsukamoto, O. (2006). Measurement methods of AC losses in HTS bulk. Physica. C, Superconductivity, 445-448, 395-398. doi:10.1016/j.physc.2006.04.025.
Zushi, Y., Asaba, I., Ogawa, J., Yamagishi, K., Tsukamoto, O., Murakami, M., & Tomita, M. (2004). Study of suppression of decay of trapped magnetic field in HTS bulk subject to AC magnetic field. Physica. C, Superconductivity, 412-414, 708-713. doi:10.1016/j.physc.2004.01.094.