[en] Mass spectrometry (MS)-based technology provides label-free localization of molecules in tissue samples. Drugs, proteins, lipids and metabolites can easily be monitored in their environment. Resolution can be achieved down to the cellular level (10–20 mm) for conventional matrix-assisted laser desorption/ionization (MALDI) imaging, or even to the subcellular level for more complex technologies such as secondary ionization mass spectrometry (SIMS) imaging. One question remains: are we going to be able to investigate functional relationships between drugs and proteins and compare with localized phenomena? This review describes the various spatial levels of investigation offered by mass spectrometry imaging (MSI), and the advantages and disadvantages compared with other labeling technologies.
Research Center/Unit :
Giga-Systems Biology and Chemical Biology - ULiège CRO2 (Marseille)
Disciplines :
Human health sciences: Multidisciplinary, general & others Life sciences: Multidisciplinary, general & others Chemistry
Author, co-author :
Ait-Belkacem, Rima; Aix-Marseille Université > CRO2, 13385 Marseille, France > INSERM, UMR 911, 13385 Marseille, France
Sellami, Lyna; Aix-Marseille Université > CRO2, 13385 Marseille, France > INSERM, UMR 911, 13385 Marseille, France
Villard, Claude; Aix-Marseille Université > CR02, 13385 Marseille, France > INSERM, UMR 911, 13385 Marseille, France
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > GIGA-R : Laboratoire de spectrométrie de masse (L.S.M.)
Calligaris, David ; Université de Liège - ULiège > Département de chimie (sciences) > GIGA-R : Laboratoire de spectrométrie de masse (L.S.M.)
Lafitte, Daniel; Aix-Marseille Université > CRO2, 13385, Marseille, France > INSERM, UMR 911, 13385 Marseille, France
Language :
English
Title :
Mass spectrometry imaging is moving toward drug protein co-localization
INSERM - Institut National de la Santé et de la Recherche Médicale F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège - Université de Liège FEDER - Fonds Européen de Développement Régional ARC - Association pour la Recherche sur le Cancer Canceropôle PACA Shimadzu
Troendle F.J., et al. Detection of pharmaceutical compounds in tissue by matrix-assisted laser desorption/ionization and laser desorption/chemical ionization tandem mass spectrometry with a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 1999, 10:1315-1321.
Omer D. Post-reconstruction filtering of positron emission tomography whole-body emission images and attenuation maps using nonlinear diffusion filtering 1. Acad. Radiol. 2004, 11:1105-1114.
Goodwin R.J., et al. Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal. Chem. 2011, 83:9694-9701.
Glunde K., et al. Real-time changes in 1H and 31P NMR spectra of malignant human mammary epithelial cells during treatment with the anti-inflammatory agent indomethacin. Magn. Reson. Med. 2002, 48:819-825.
Behrens S., et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 2008, 74:3143-3150.
Bzyl J., et al. Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur. Radiol. 2011, 21:1988-1995.
Glunde K., et al. Molecular and functional imaging of breast cancer. NMR Biomed. 2009, 22:92-103.
Kertesz V., et al. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal. Chem. 2008, 80:5168-5177.
Li Q., et al. The distribution pattern of intravenous [(14)C] artesunate in rat tissues by quantitative whole-body autoradiography and tissue dissection techniques. J. Pharm. Biomed. Anal. 2008, 48:876-884.
Solon E.G., et al. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS. J. 2010, 12:11-26.
Piwowar A., et al. Top-down approach to studying biological components using ToF-SIMS. Surf. Interface Anal. 2010, 43:265-268.
Lanni E.J., et al. Mass spectrometry imaging and profiling of single cells. J. Proteomics 2012, 10.1016/j.jprot.2012.03.017.
Khatib-Shahidi S., et al. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal. Chem. 2006, 78:6448-6456.
Balluff B., et al. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem. Cell Biol. 2011, 136:227-244.
Becker J.S., et al. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 2005, 77:3208-3216.
Pevsner P.H., et al. Mass spectrometry MALDI imaging of colon cancer biomarkers: a new diagnostic paradigm. Biomark. Med. 2009, 3:55-69.
Godovac-Zimmermann J., Brown L.R. Perspectives for mass spectrometry and functional proteomics. Mass Spectrom. Rev. 2001, 20:1-57.
Lahm H.W., Langen H. Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 2000, 21:2105-2114.
Calligaris D., et al. Advances in top-down proteomics for disease biomarker discovery. J. Proteomics 2011, 74:920-934.
Todd P.J., et al. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J. Mass Spectrom. 2001, 36:355-369.
Chaurand P., et al. Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am. J. Pathol. 2004, 165:1057-1068.
Hsieh Y., et al. Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J. Pharmacol. Toxicol. Methods 2007, 55:193-200.
Reyzer M.L., et al. Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2003, 38:1081-1092.
Reyzer M.L., et al. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry. Methods Mol. Biol. 2010, 656:285-301.
Stoeckli M., et al. Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18:1921-1924.
Stoeckli M., et al. Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int. J. Mass Spectrom. 2007, 260:195-202.
Blatherwick E.Q., et al. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism. Xenobiotica 2011, 41:720-734.
Hsieh Y., et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun. Mass Spectrom. 2006, 20:965-972.
Yanes O., et al. Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal. Chem. 2009, 81:2969-2975.
Bunch J., et al. Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18:3051-3060.
Atkinson S.J., et al. Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumours by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21:1271-1276.
Drexler D.M., et al. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J. Pharmacol. Toxicol. Methods 2007, 55:279-288.
Trim P.J., et al. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal. Chem. 2008, 80:8628-8634.
Marko-Varga G., et al. Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J. Proteomics 2011, 74:982-992.
Nilsson A., et al. Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS ONE 2010, 5:e11411.
Chaurand P., et al. Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections. J. Mass Spectrom. 2007, 42:476-489.
Prideaux B., et al. High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal. Chem. 2011, 83:2112-2118.
Cornett D.S., et al. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal. Chem. 2008, 80:5648-5653.
Dekker L.J., et al. A mass spectrometry based imaging method developed for the intracellular detection of HIV protease inhibitors. Rapid Commun. Mass Spectrom. 2009, 23:1183-1188.
Miki A., et al. MALDI-TOF and MALDI-FTICR imaging mass spectrometry of methamphetamine incorporated into hair. J. Mass Spectrom. 2011, 46:411-416.
Sleighter R.L., Hatcher P.G. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J. Mass Spectrom. 2007, 42:559-574.
Tremblay L.B., et al. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry and excitation/emission spectroscopy. Mar. Chem. 2007, 105:15-29.
Woods A.S., et al. Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal. Chem. 2004, 76:2187-2195.
McLean J.A., et al. Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J. Mass Spectrom. 2007, 42:1099-1105.
Jackson S.N., et al. Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS. J. Am. Soc. Mass Spectrom. 2005, 16:133-138.
Law K.P., Larkin J.R. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 2011, 399:2597-2622.
Koestler M., et al. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 2008, 22:3275-3285.
Luxembourg S.L., et al. High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal. Chem. 2004, 76:5339-5344.
Klerk L.A., et al. C60+ secondary ion microscopy using a delay line detector. Anal. Chem. 2010, 82:801-807.
Altelaar A.F., Piersma S.R. Cellular imaging using matrix-enhanced and metal-assisted SIMS. Methods Mol. Biol. 2010, 656:197-208.
Fletcher J.S. Cellular imaging with secondary ion mass spectrometry. Analyst 2009, 134:2204-2215.
Fletcher J.S., Vickerman J.C. A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal. Bioanal. Chem. 2010, 396:85-104.
Fletcher J.S., et al. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal. Chem. 2007, 79:2199-2206.
McDonnell L.A., et al. Using matrix peaks to map topography: increased mass resolution and enhanced sensitivity in chemical imaging. Anal. Chem. 2003, 75:4373-4381.
Smith D.F., et al. C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2011, 83:9552-9556.
Wiseman J.M., et al. Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat. Protoc. 2008, 3:517-524.
Wiseman J.M., et al. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:18120-18125.
Trim P.J., et al. Imaging mass spectrometry for the assessment of drugs and metabolites in tissue. Bioanalysis 2009, 1:309-319.
Zaima N., et al. Imaging of metabolites by MALDI mass spectrometry. J. Oleo. Sci. 2009, 58:415-419.
Crecelius A.C., et al. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16:1093-1099.
Chen R., et al. Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J. Am. Soc. Mass Spectrom. 2009, 20:1068-1077.
Lagarrigue M., et al. Revisiting rat spermatogenesis with MALDI imaging at 20-microm resolution. Mol. Cell. Proteomics 2011, 10:M110.
Seeley E.H., Caprioli R.M. Molecular imaging of proteins in tissues by mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:18126-18131.
Chaurand P., et al. Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics 2003, 3:2221-2239.
Bonnel D., et al. Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer. Anal. Bioanal. Chem. 2011, 401:149-165.
Burnum K.E., et al. Imaging mass spectrometry reveals unique protein profiles during embryo implantation. Endocrinology 2008, 149:3274-3278.
Eikel D., et al. Liquid extraction surface analysis mass spectrometry (LESA-MS) as a novel profiling tool for drug distribution and metabolism analysis: the terfenadine example. Rapid Commun. Mass Spectrom. 2011, 25:3587-3596.
Nemes P., Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 2007, 79:8098-8106.
Espina V., et al. Laser-capture microdissection. Nat. Protoc. 2006, 1:586-603.
Palmer-Toy D.E., et al. Direct acquisition of matrix-assisted laser desorption/ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin. Chem. 2000, 46:1513-1516.
Paweletz C.P., et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res. 2000, 60:6293-6297.
Emmert-Buck M.R., et al. Molecular profiling of clinical tissue specimens: feasibility and applications. Am. J. Pathol. 2000, 156:1109-1115.
Xu B.J., et al. Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13:1292-1297.
Franck J., et al. On-tissue N-terminal peptide derivatizations for enhancing protein identification in MALDI mass spectrometric imaging strategies. Anal. Chem. 2009, 81:8305-8317.
Debois D., et al. MALDI-in source decay applied to mass spectrometry imaging: a new tool for protein identification. Anal. Chem. 2010, 82:4036-4045.
Calligaris D., et al. MALDI in-source decay of high mass protein isoforms: application to alpha- and beta-tubulin variants. Anal. Chem. 2010, 82:6176-6184.
Sellami L., et al. In-source decay and pseudo MSn fragmentation processes of entire high mass proteins on a hybrid vacuum MALDI-QIT-TOF mass spectrometer. Anal. Chem. 2012, 84:5180-5185.
Magnusson Y., et al. Lipid imaging of human skeletal muscle using TOF-SIMS with bismuth cluster ion as a primary ion source. Clin. Physiol. Funct. Imaging 2008, 28:202-209.
Signor L., et al. Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 2007, 42:900-909.
Nahrendorf M., et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7910-7915.
Puolitaival S.M., et al. Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J. Am. Soc. Mass Spectrom. 2008, 19:882-886.
Seeley E.H., et al. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc. Mass Spectrom. 2008, 19:1069-1077.
Lemaire R., et al. Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag. J. Proteome. Res. 2007, 6:2057-2067.
Keren S., et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:5844-5849.
Ryder A.G. Surface enhanced Raman scattering for narcotic detection and applications to chemical biology. Curr. Opin. Chem. Biol. 2005, 9:489-493.
Débarre A., et al. Raman hyperspectral imaging applied to chemical co-localization in diluted samples of perylene-doped nanotubes. Chem. Phys. Lett. 2002, 366:274-278.
Kukreti S., et al. Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra. J. Biomed. Opt. 2007, 12:020509.
Mumprecht V., et al. In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res. 2010, 70:8842-8851.
Petibois C. Imaging methods for elemental, chemical, molecular, and morphological analyses of single cells. Anal. Bioanal. Chem. 2010, 397:2051-2065.