Paper published in a book (Scientific congresses and symposiums)
Segment and combine: a generic approach for supervised learning of invariant classifiers from topologically structured data
Geurts, Pierre; Marée, Raphaël; Wehenkel, Louis
2006In Proceedings of the Machine Learning Conference of Belgium and The Netherlands (Benelearn)
Peer reviewed
 

Files


Full Text
geurts-benelearn06-final.pdf
Author postprint (248.95 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
bioinformatics; machine learning; biomagnet
Abstract :
[en] A generic method for supervised classification of structured objects is presented. The approach induces a classifier by (i) deriving a surrogate dataset from a pre-classified dataset of structured objects, by segmenting them into pieces, (ii) learning a model relating pieces to object-classes, (iii) classifying structured objects by combining predictions made for their pieces. The segmentation allows to exploit local information and can be adapted to inject invariances into the resulting classifier. The framework is illustrated on practical sequence, time-series and image classification problems.
Disciplines :
Computer science
Author, co-author :
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Marée, Raphaël  ;  Université de Liège - ULiège > GIGA-Management : Plateforme bioinformatique
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Segment and combine: a generic approach for supervised learning of invariant classifiers from topologically structured data
Publication date :
2006
Event name :
Annual Machine Learning Conference of Belgium and The Netherlands
Event place :
Gent, Belgium
Event date :
du 11 au 12 mai 2006
Audience :
International
Main work title :
Proceedings of the Machine Learning Conference of Belgium and The Netherlands (Benelearn)
Pages :
15-23
Peer reviewed :
Peer reviewed
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 09 May 2009

Statistics


Number of views
234 (16 by ULiège)
Number of downloads
147 (10 by ULiège)

Bibliography


Similar publications



Contact ORBi