Abstract :
[en] NOD2 is one of the best characterized member of the cytosolic NOD-like receptors (NLR) family. NOD2 is able to sense muramyl dipeptide (MDP), a specific bacterial cell wall component, and to subsequently induce various signalling pathways leading to NF- kappaB activation and autophagy, both events contributing to an efficient innate and adaptative immune response. Interestingly, loss-of-function nod2 variants were associated with a higher susceptibility for Crohn ' s disease (CD), which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-jun N-terminal kinase binding protein 1 (JNKBP1), a scaffold protein characterized by a N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following MDP activation. This interaction attenuates NOD2-mediated NF-kappaB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signalling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.
Scopus citations®
without self-citations
19