The c-jun N-terminal Kinase (JNK)-binding Protein (JNKBP1) Acts as a Negative Regulator of NOD2 Protein Signaling by Inhibiting Its Oligomerization Process
Lecat, Aurore; Di Valentin, Emmanuel; Somja, Joanet al.
2012 • In Journal of Biological Chemistry, 287 (35), p. 29213-26
[en] NOD2 is one of the best characterized member of the cytosolic NOD-like receptors (NLR) family. NOD2 is able to sense muramyl dipeptide (MDP), a specific bacterial cell wall component, and to subsequently induce various signalling pathways leading to NF- kappaB activation and autophagy, both events contributing to an efficient innate and adaptative immune response. Interestingly, loss-of-function nod2 variants were associated with a higher susceptibility for Crohn ' s disease (CD), which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-jun N-terminal kinase binding protein 1 (JNKBP1), a scaffold protein characterized by a N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following MDP activation. This interaction attenuates NOD2-mediated NF-kappaB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signalling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.
The c-jun N-terminal Kinase (JNK)-binding Protein (JNKBP1) Acts as a Negative Regulator of NOD2 Protein Signaling by Inhibiting Its Oligomerization Process
Publication date :
2012
Journal title :
Journal of Biological Chemistry
ISSN :
0021-9258
eISSN :
1083-351X
Publisher :
American Society for Biochemistry and Molecular Biology, Baltimore, United States - Maryland
Kawai, T., and Akira, S. (2005) Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17, 338-344
Chen, G., Shaw, M. H., Kim, Y. G., and Nuñez, G. (2009) NOD-like receptors. Role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365-398
Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cézard, J. P., Belaiche, J., Almer, S., Tysk, C., O'Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J. F., Sahbatou, M., and Thomas, G. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599-603
Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R. H., Achkar, J. P., Brant, S. R., Bayless, T. M., Kirschner, B. S., Hanauer, S. B., Nuñez, G., and Cho, J. H. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603-606
Ogura, Y., Inohara, N., Benito, A., Chen, F. F., Yamaoka, S., and Nunez, G. (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812-4818
Girardin, S. E., Boneca, I. G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D. J., and Sansonetti, P. J. (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869-8872
Inohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., Fukase, K., Inamura, S., Kusumoto, S., Hashimoto, M., Foster, S. J., Moran, A. P., Fernandez-Luna, J. L., and Nuñez, G. (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509-5512
Tigno-Aranjuez, J. T., Asara, J. M., and Abbott, D. W. (2010) Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses. Genes Dev. 24, 2666-2677
Bertrand, M. J., Doiron, K., Labbé, K., Korneluk, R. G., Barker, P. A., and Saleh, M. (2009) Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789-801
Kim, J. Y., Omori, E., Matsumoto, K., Núñez, G., and Ninomiya-Tsuji, J. (2008) TAK1 is a central mediator of NOD2 signaling in epidermal cells. J. Biol. Chem. 283, 137-144
Lecat, A., Piette, J., and Legrand-Poels, S. (2010) The protein Nod2. An innate receptor more complex than previously assumed. Biochem. Pharmacol. 80, 2021-2031
Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., Ferguson, D. J., Campbell, B. J., Jewell, D., and Simmons, A. (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90-97
Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y. G., Magalhães, J. G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., Boneca, I. G., Allaoui, A., Jones, N. L., Nuñez, G., Girardin, S. E., and Philpott, D. J. (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55-62
Kobayashi, K. S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nuñez, G., and Flavell, R. A. (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731-734
Kim, Y. G., Kamada, N., Shaw, M. H., Warner, N., Chen, G. Y., Franchi, L., and Núñez, G. (2011) The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769-780
Koyano, S., Ito, M., Takamatsu, N., Shiba, T., Yamamoto, K., and Yoshioka, K. (1999) A novel Jun N-terminal kinase (JNK)-binding protein that enhances the activation of JNK by MEK kinase 1 and TGF-β-activated kinase 1. FEBS Lett. 457, 385-388
Yamaguchi, T., Miyashita, C., Koyano, S., Kanda, H., Yoshioka, K., Shiba, T., Takamatsu, N., and Ito, M. (2009) JNK-binding protein 1 regulates NF-κB activation through TRAF2 and TAK1. Cell Biol. Int. 33, 364-368
Kufer, T. A., Kremmer, E., Adam, A. C., Philpott, D. J., and Sansonetti, P. J. (2008) The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol. 10, 477-486
Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25, 402-408
Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R., and Podolsky, D. K. (2005) Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170, 21-26
Ogura, Y., Lala, S., Xin, W., Smith, E., Dowds, T. A., Chen, F. F., Zimmermann, E., Tretiakova, M., Cho, J. H., Hart, J., Greenson, J. K., Keshav, S., and Nuñez, G. (2003) Expression of NOD2 in Paneth cells. A possible link to Crohn's ileitis. Gut 52, 1591-1597
Lala, S., Ogura, Y., Osborne, C., Hor, S. Y., Bromfield, A., Davies, S., Ogunbiyi, O., Nuñez, G., and Keshav, S. (2003) Crohn's disease and the NOD2 gene. A role for paneth cells. Gastroenterology 125, 47-57
Rosenstiel, P., Fantini, M., Bräutigam, K., Kühbacher, T., Waetzig, G. H., Seegert, D., and Schreiber, S. (2003) TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124, 1001-1009
Lipinski, S., Till, A., Sina, C., Arlt, A., Grasberger, H., Schreiber, S., and Rosenstiel, P. (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J. Cell Sci. 122, 3522-3530
Duncan, J. A., Bergstralh, D. T., Wang, Y., Willingham, S. B., Ye, Z., Zimmermann, A. G., and Ting, J. P. (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. U.S.A. 104, 8041-8046
Faustin, B., Lartigue, L., Bruey, J. M., Luciano, F., Sergienko, E., Bailly-Maitre, B., Volkmann, N., Hanein, D., Rouiller, I., and Reed, J. C. (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25, 713-724
Tanabe, T., Chamaillard, M., Ogura, Y., Zhu, L., Qiu, S., Masumoto, J., Ghosh, P., Moran, A., Predergast, M. M., Tromp, G., Williams, C. J., Inohara, N., and Núñez, G. (2004) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 1587-1597
Strober, W., Murray, P. J., Kitani, A., and Watanabe, T. (2006) Signaling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6, 9-20
Bielig, H., Zurek, B., Kutsch, A., Menning, M., Philpott, D. J., Sansonetti, P. J., and Kufer, T. A. (2009) A function for AAMP in Nod2-mediated NF-κB activation. Mol. Immunol. 46, 2647-2654
Stirnimann, C. U., Petsalaki, E., Russell, R. B., and Müller, C. W. (2010) WD40 proteins propel cellular networks. Trends Biochem. Sci. 35, 565-574
Windheim, M., Lang, C., Peggie, M., Plater, L. A., and Cohen, P. (2007) Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem. J. 404, 179-190
Perez, L. H., Butler, M., Creasey, T., Dzink-Fox, J., Gounarides, J., Petit, S., Ropenga, A., Ryder, N., Smith, K., Smith, P., and Parkinson, S. J. (2010) Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations. PLoS One 5, e10915
Tattoli, I., Travassos, L. H., Carneiro, L. A., Magalhaes, J. G., and Girardin, S. E. (2007) The Nodosome. Nod1 and Nod2 control bacterial infections and inflammation. Semin. Immunopathol. 29, 289-301
Werts, C., le Bourhis, L., Liu, J., Magalhaes, J. G., Carneiro, L. A., Fritz, J. H., Stockinger, S., Balloy, V., Chignard, M., Decker, T., Philpott, D. J., Ma, X., and Girardin, S. E. (2007) Nod1 and Nod2 induce CCL5/RANTES through the NF-κB pathway. Eur. J. Immunol. 37, 2499-2508
Anand, P. K., Tait, S. W., Lamkanfi, M., Amer, A. O., Nunez, G., Pagès, G., Pouysségur, J., McGargill, M. A., Green, D. R., and Kanneganti, T. D. (2011) TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J. Biol. Chem. 286, 42981-42991
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728