[en] A two-point correlation function provides a crucial yet an incomplete characterization of a microstructure because distinctly differentmicrostructures may have the same correlation function. In an earlier Letter [Gommes, Jiao, and Torquato, Phys. Rev. Lett. 108, 080601 (2012)], we addressed the microstructural degeneracy question: What is the number of microstructures compatible with a specified correlation function? We computed this degeneracy, i.e., configurational entropy, in the framework of reconstruction methods, which enabled us to
map the problem to the determination of ground-state degeneracies. Here, we provide a more comprehensive presentation of the methodology and analyses, as well as additional results. Since the configuration space of a reconstruction problem is a hypercube on which a Hamming distance is defined, we can calculate analytically the energy profile of any reconstruction problem, corresponding to the average energy of allmicrostructures at a given Hamming distance from a ground state. The steepness of the energy profile is a measure of the roughness of the energy landscape associated with the reconstruction problem, which can be used as a proxy for the ground-state degeneracy. The relationship between this roughness metric and the ground-state degeneracy is calibrated using a Monte Carlo algorithm for determining the ground-state degeneracy of a variety of microstructures, including realizations of hard disks and Poisson point processes at various densities as well as thosewith known degeneracies (e.g., single disks of various sizes and a particular crystalline microstructure). We show that our results can be expressed in terms of the information content of the two-point correlation functions. From this perspective, the a priori condition for a reconstruction to be accurate is that the information content, expressed in bits, should be comparable to the number of pixels in the unknown microstructure. We provide a formula to calculate the information content of any two-point correlation function, which makes our results broadly applicable to any field in which correlation functions are employed.
Disciplines :
Physics
Author, co-author :
Gommes, Cédric ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Génie catalytique
Jiao, Yang; Princeton University
Torquato, Salvatore; Princeton University
Language :
English
Title :
Microstructural degeneracy associated with a two-point correlation function and its information content
Publication date :
2012
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, College Park, United States - Maryland
R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).
J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th ed. (Prentice-Hall, London, 2006).
J. Serra, Image Analysis and Mathematical Morphology (Academic Press, London, 1982), Vol. 1.
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).
J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty (Wiley, New York, 1999).
G. Matheron, Elements pour une Théorie des Milieux Poreux (Masson, Paris, 1967).
S. Torquato, Random Heterogeneous Materials (Springer, New York, 2002).
M. Sahimi, Heterogeneous Materials I: Linear Transport and Optical Properties (Springer, New York, 2003), Vol. 1.
O. Glatter and O. Kratky, Small Angle X-ray Scattering (Academic Press, New York, 1982).
L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Springer, Berlin, 1987).
A. Filipponi, A. DiCicco, and C. R. Natoli, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.52.15122 52, 15122 (1995).
J. M. Drake, J. Klafter, and P. Levitz, Science SCIEAS 0036-8075 10.1126/science.2011737 251, 1574 (1991).
G. A. Barral, L. Frydman, and G. C. Chingas, Science SCIEAS 0036-8075 10.1126/science.255.5045.714 255, 714 (1992).
C. J. Gommes, J. P. Pirard, and S. Blacher, J. Microsc. JMICAR 0022-2720 10.1111/j.1365-2818.2007.01759.x 226, 156 (2007). (Pubitemid 46625277)
C. J. Gommes, H. Friedrich, P. E. de Jongh, and K. P. de Jong, Acta Mater. ACMAFD 1359-6454 10.1016/j.actamat.2009.09.055 58, 770 (2010).
D. I. Svergun, Biophys. J. BIOJAU 0006-3495 10.1016/S0006-3495(99)77443-6 76, 2879 (1999).
D. I. Svergun, M. V. Petoukhov, and M. H. J. Koch, Biophys. J. BIOJAU 0006-3495 10.1016/S0006-3495(01)76260-1 80, 2946 (2001).
A. M. Beale, A. M. J. van der Eerden, S. D. M. Jacques, O. Leynaud, M. G. O'Brien, F. Meneau, S. Nikitenko, W. Bras, and B. M. Weckhuysen, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja062580r 128, 12386 (2006). (Pubitemid 44478837)
C. J. Gommes and A. P. Roberts, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.77.041409 77, 041409 (2008). (Pubitemid 351607681)
A. L. Patterson, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.65.195 65, 195 (1944).
C. L. Y. Yeong and S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.57.495 57, 495 (1998).
A. Aubert and D. Jeulin, Pattern Recogn. PTNRA8 0031-3203 10.1016/S0031-3203(99)00166-1 33, 1083 (2000). (Pubitemid 30589466)
N. Sheehan and S. Torquato, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1327609 89, 53 (2001). (Pubitemid 33703343)
B. L. Hansen, B. L. Adams, M. E. Lyon, and A. Henrie, J. Comp.-Aided Mater. Des. JCODES 0928-1045 10.1007/s10820-005-0884-3 10, 163 (2005). (Pubitemid 43273915)
D. T. Fullwood, S. R. Niezgoda, and S. R. Kalidindi, Acta Mater. ACMAFD 1359-6454 10.1016/j.actamat.2007.10.044 56, 942 (2008).
Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.81.011105 81, 011105 (2010).
Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.011106 82, 011106 (2010).
L. Berthier and G. Tarjus, J. Chem. Phys. 0021-9606 10.1063/1.3592709 134, 214503 (2011).
P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1722830 28, 679 (1957).
S. Ciccariello, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.28.4301 28, 4301 (1983).
A. L. Patterson, Nature (London) NATUAS 0028-0836 10.1038/143939b0 143, 939 (1939).
H. Hauptman, Science SCIEAS 0036-8075 10.1126/science.233.4760.178 233, 178 (1986).
C. Chubb and J. I. Yellott, Vision Res. VISRAM 0042-6989 10.1016/S0042-6989(99)00191-1 40, 485 (2000). (Pubitemid 30069659)
M. G. Rozman and M. Utz, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.63.066701 63, 066701 (2001).
M. G. Rozman and M. Utz, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.135501 89, 135501 (2002).
M. D. Rintoul and S. Torquato, J. Colloid Interface Sci. JCISA5 0021-9797 10.1006/jcis.1996.4675 186, 467 (1997). (Pubitemid 27468850)
Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci. USA PNASA6 0027-8424 10.1073/pnas.0905919106 106, 17634 (2009);
S. Torquato, Annu. Rev. Mater. Res. 10.1146/annurev-matsci-070909-104517 40, 101 (2010).
C. J. Gommes, Y. Jiao, and S. Torquato, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.108.080601 108, 080601 (2012).
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science SCIEAS 0036-8075 10.1126/science.220.4598.671 220, 671 (1983).
S. K. Alexander, P. Fieguth, M. A. Ioannidis, and E. R. Vrscay, Math. Geosci. 1874-8961 10.1007/s11004-008-9209-x 41, 357 (2009).
S. H. Kim and H. Pitsch, J. Electrochem. Soc. B JESOAN 0013-4651 10.1149/1.3106136 156, 673 (2009).
S. Schlueter and H.-J. Vogel, Adv. Water Resour. AWREDI 0309-1708 10.1016/j.advwatres.2010.12.004 34, 314 (2011).
K. N. Grew and W. K. S. Chiu, J. Pow. Sources JPSODZ 0378-7753 10.1016/j.jpowsour.2011.10.010 199, 1 (2012).
Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.76.031110 76, 031110 (2007). (Pubitemid 47443131)
C. E. Zachary and S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.84.056102 84, 056102 (2011).
S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.056109 82, 056109 (2010).
Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.77.031135 77, 031135 (2008). (Pubitemid 351466180)
F. G. Wang and D. P. Landau, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.2050 86, 2050 (2001). (Pubitemid 32254758)
F. G. Wang and D. P. Landau, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.64.056101 64, 056101 (2001).
P. Dayal, S. Trebst, S. Wessel, D. Wurtz, M. Troyer, S. Sabhapandit, and S. N. Coppersmith, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92. 097201 92, 097201 (2004).
C. G. Zhou and R. N. Bhatt, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.72.025701 72, 025701 (2005). (Pubitemid 41520977)
R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.75.046701 75, 046701 (2007). (Pubitemid 46559785)
C. Yamaguchi and Y. Okabe, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/34/42/305 34, 8781 (2001).
N. Rathore and J. J. de Pablo, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1463059 116, 7225 (2002). (Pubitemid 34537101)
S. Ermon, C. Gomes, and B. Selman, in Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming, edited by, D. Cohen, Lecture Notes in Computer Science Vol. 6308 (Springer, Berlin, 2010), pp. 38-52.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1699114 21, 1087 (1953).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/ PhysRevE.85.051140 for algorithmic and mathematical details, as well as for the list of microstructures used to generate Fig. 12.
D. J. Wales, M. A. Miller, and T. R. Walsh, Nature (London) NATUAS 0028-0836 10.1038/29487 394, 758 (1998). (Pubitemid 28391634)
P. G. Debenedetti and F. H. Stillinger, Nature (London) NATUAS 0028-0836 10.1038/35065704 410, 259 (2001). (Pubitemid 32218700)
B. L. Lu and S. Torquato, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.458827 93, 3452 (1990).
T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991).
A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, Dillenschneider, and E. Lutz, Nature (London) NATUAS 0028-0836 10.1038/nature10872 483, 187 (2012).
S. Torquato and G. Stell, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.448475 82, 980 (1985).
V. V. Volkov and D. I. Svergun, J. Appl. Crystallogr. JACGAR 0021-8898 10.1107/S0021889803000268 36, 860 (2003).
C. Bostedt, E. Eremina, D. Rupp, M. Adolph, H. Thomas, M. Hoener, A. R. B. de Castro, J. Tiggesbäumker, K.-H. Meiwes-Broer, T. Laarmann, H. Wabnitz, E. Plönjes, R. Treusch, J. R. Schneider, and T. Möller, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.108.093401 108, 093401 (2012).
E. S. Reich, Nature (London) NATUAS 0028-0836 10.1038/480303a 480, 303 (2011).
J. I. Yellott, J. Opt. Soc. Am. A 1084-7529 10.1364/JOSAA.10.000777 10, 777 (1993).
S. Torquato and G. Stell, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.444011 77, 2071 (1982).
S. Torquato and G. Stell, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.445245 78, 3262 (1983).
S. Torquato, J. D. Beasley, and Y. C. Chiew, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.454440 88, 6540 (1988).
J. Méring and D. Tchoubar, J. Appl. Crystallogr. JACGAR 0021-8898 10.1107/S0021889868005212 1, 153 (1968).
S. Torquato and B. Lu, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.47. 2950 47, 2950 (1993).