[en] Signal transduction networks are complex, as are their mathematical models. Gaining a deeper understanding requires a system analysis. Important aspects are the number, location and stability of steady states. In particular, bistability has been recognised as an important feature to achieve molecular switching. This paper compares different model structures and analysis methods particularly useful for bistability analysis. The biological applications include proteolytic cascades as, for example, encountered in the apoptotic signalling pathway or in the blood clotting system. We compare three model structures containing zero-order, inhibitor and cooperative ultrasensitive reactions, all known to achieve bistability. The combination of phase plane and bifurcation analysis provides an illustrative and comprehensive understanding of how bistability can be achieved and indicates how robust this behaviour is. Experimentally, some so-called "inactive" components were shown to have a residual activity. This has been mostly ignored in mathematical models. Our analysis reveals that bistability is only mildly affected in the case of zero-order or inhibitor ultrasensitivity. However, the case where bistability is achieved by cooperative ultrasensitivity is severely affected by this perturbation. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Eissing, Thomas
Waldherr, Steffen
Allgöwer, Frank
Scheurich, Peter
Bullinger, Eric ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes computationnelles pour la biologie systémique
Langue du document :
Anglais
Titre :
Steady state and (bi-) stability evaluation of simple protease signalling networks
Angeli D. New analysis technique for multistability detection. Syst. Biol. 153 2 (2006) 61-69
Angeli D., Ferrell J.E., and Sontag Jr. E.D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. U.S.A. 101 7 (2004) 1822-1827
Bagci E.Z., Vodovotz Y., Billiar T.R., Ermentrout G.B., and Bahar I. Bistability in apoptosis: roles of Bax, Bcl-2 and mitochondrial permeability transition pores. Biophys. J. 90 (2006) 1546-1559
Beltrami E., and Jesty J. Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. Proc. Natl. Acad. Sci. U.S.A. 92 19 (1995) 8744-8748
Bhalla U.S., Ram P.T., and Iyengar R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297 5583 (2002) 1018-1023
Blüthgen N., Bruggeman F.J., Legewie S., Herzel H., Westerhoff H.V., and Kholodenko B.N. Effects of sequestration on signal transduction cascades. FEBS J. 273 5 (2006) 895-906
Cherry J.L., and Adler F.R. How to make a biological switch. J. Theor. Biol. 203 2 (2000) 117-133
Dahlbäck B. Blood coagulation. Lancet 355 9215 (2000) 1627-1632
Danial N.N., and Korsmeyer S.J. Cell death: critical control points. Cell 116 2 (2004) 205-219
Dash C., Kulkarni A., Dunn B., and Rao M. Aspartic peptidase inhibitors: implications in drug development. Crit. Rev. Biochem. Mol. Biol. 38 2 (2003) 89-119
Eißing T., Allgöwer F., and Bullinger E. Robustness properties of apoptosis models with respect to parameter variations and stochastic influences. Syst. Biol. 152 4 (2005) 221-228
Eißing T., Conzelmann H., Gilles E.D., Allgöwer F., Bullinger E., and Scheurich P. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279 35 (2004) 36892-36897
Ferrell Jr. J.E. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem. Sci. 21 12 (1996) 460-466
Ferrell Jr. J.E. How responses get more switch-like as you move down a protein kinase cascade. Trends Biochem. Sci. 22 8 (1997) 288-289
Ferrell J.E., and Machleder Jr. E.M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280 5365 (1998) 895-898
Ferrell J.E., and Xiong Jr. W. Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11 1 (2001) 227-236
Goldbeter A., and Koshland D.E. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. U.S.A. 78 11 (1981) 6840-6844
Goldbeter A., and Koshland D.E. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J. Biol. Chem. 259 23 (1984) 14441-14447
Grabowskal U., Chambers T.J., and Shiroo M. Recent developments in cathepsin K inhibitor design. Curr. Opin. Drug Discov. Dev. 8 5 (2005) 619-630
Hengartner M.O. The biochemistry of apoptosis. Nature 407 6805 (2000) 770-776
Hodgkin A.L., and Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 4 (1952) 500-544
Huang C.Y., and Ferrell Jr. J.E. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U.S.A. 93 19 (1996) 10078-10083
Koshland D.E. The era of pathway quantification. Science 280 5365 (1998) 852-853
Legewie S., Blüthgen N., and Herzel H. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput. Biol. 2 9 (2006) e120
Leist M., and Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2 8 (2001) 589-598
Lisman J.E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. U.S.A. 82 9 (1985) 3055-3057
Ma L., and Iglesias P.A. Quantifying robustness of biochemical network models. BMC Bioinformat. 3 (2002) 38
Mangan S., and Alon U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. U.S.A. 100 21 (2003) 11980-11985
Markevich N.I., Hoek J.B., and Kholodenko B.N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164 3 (2004) 353-359
Ortega F., Acerenza L., Westerhoff H.V., Mas F., and Cascante M. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades. Proc. Natl. Acad. Sci. U.S.A. 99 3 (2002) 1170-1175
Overall C.M., and López-Otín C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer 2 9 (2002) 657-672
Piccardi C., and Rinaldi S. Remarks on excitability, stability and sign of equilibria in cooperative systems. Syst. Cont. Lett. 46 (2002) 153-163
Qu Z., MacLellan W.R., and Weiss J.N. Dynamics of the cell cycle: checkpoints, sizers, and timers. Biophys. J. 85 6 (2003) 3600-3611
Rehm M., Huber H.J., Dussmann H., and Prehn J.H.M. Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J. 25 18 (2006) 4338-4349
Shmulevich I., Kauffman S.A., and Aldana M. Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. U.S.A. 102 38 (2005) 13439-13444
Slee E.A., Harte M.T., Kluck R.M., Wolf B.B., Casiano C.A., Newmeyer D.D., Wang H.G., Reed J.C., Nicholson D.W., Alnemri E.S., Green D.R., and Martin S.J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144 2 (1999) 281-292
Sloane B.F., Yan S., Podgorski I., Linebaugh B.E., Cher M.L., Mai J., Cavallo-Medved D., Sameni M., Dosescu J., and Moin K. Cathepsin B and tumor proteolysis: contribution of the tumor microenvironment. Semin. Cancer Biol. 15 2 (2005) 149-157
Sohn D., Schulze-Osthoff K., and Jänicke R.U. Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J. Biol. Chem. 280 7 (2005) 5267-5273
Stelling J., Sauer U., Szallasi Z., Dolye F.J., and Doyle III J. Robustness of cellular functions. Cell 118 6 (2004) 675-685
Stennicke H.R., and Salvesen G.S. Catalytic properties of the caspases. Cell Death Differ. 6 11 (1999) 1054-1059
Strogatz S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2001), Perseus Books, Cambridge, MA
Thron C.D. Theoretical dynamics of the cyclin B-MPF system: a possible role for p13suc1. BioSystems 32 2 (1994) 97-109
Thron C.D. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene 15 3 (1997) 317-325
Thurmond R.L., Sun S., Karlsson L., and Edwards J.P. Cathepsin S inhibitors as novel immunomodulators. Curr. Opin. Invest. Drugs 6 5 (2005) 473-482
Tyson J.J., Chen K.C., and Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15 2 (2003) 221-231
Tyson J.J., and Othmer H.G. The dynamics of feedback control circuits in biochemical pathways. Progress in Theoretical Biology, vol. 5 (1978), Academic Press, New York 1-62
Van de Craen M., Declercq W., Van den brande I., Fiers W., and Vandenabeele P. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 6 11 (1999) 1117-1124
Ventura B.D., Lemerle C., Michalodimitrakis K., and Serrano L. From in vivo to in silico biology and back. Nature 443 7111 (2006) 527-533
Weiss J.N. The Hill equation revisited: uses and misuses. FASEB J. 11 11 (1997) 835-841
Wolf D.M., and Arkin A.P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6 2 (2003) 125-134
Xiong W., and Ferrell Jr. J.E. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature 426 6965 (2003) 460-465
Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 36 3/4 (2004) 285-293
Yeger-Lotem E., Sattath S., Kashtan N., Itzkovitz S., Milo R., Pinter R.Y., Alon U., and Margalit H. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U.S.A. 101 16 (2004) 5934-5939
Zarnitsina V.I., Ataullakhanov F.I., Lobanov A.I., and Morozova O.L. Dynamics of spatially nonuniform patterning in the model of blood coagulation. Chaos 11 1 (2001) 57-70