[en] The ocean plays an important role in regulating the climate, acting as a sink for carbon dioxide, perturbing the carbonate system and resulting in a slow decrease of seawater pH. Understanding the dynamics of the carbonate system in shelf sea regions is necessary to evaluate the impact of Ocean Acidification (OA) in these societally important ecosystems. Complex hydrodynamic and ecosystem coupled models provide a method of capturing the significant heterogeneity of these areas. However rigorous validation is essential to properly assess the reliability of such models. The coupled model POLCOMS–ERSEM has been implemented in the North Western European shelf with a new parameterization for alkalinity explicitly accounting for riverine inputs and the influence of biological processes. The model has been validated in a like with like comparison with North Sea data from the CANOBA dataset. The model shows good to reasonable agreement for the principal variables, physical (temperature and salinity), biogeochemical nutrients) and carbonate system (dissolved inorganic carbon and total alkalinity), but simulation of the erived variables, pH and pCO2, are not yet fully satisfactory. This high uncertainty is attributed mostly o riverine forcing and primary production. This study suggests that the model is a useful tool to provide information on Ocean Acidification scenarios, but uncertainty on pH and pCO2 needs to be reduced, particularly when impacts of OA on ecosystem functions are included in the model systems.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Artioli, Y.
Blackford, J.C.
Butenschön, M.
Holt, J.T.
Wakelin, S.L.
Thomas, H.
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Allen, J.I.
Language :
English
Title :
The carbonate system in the North Sea: sensitivity and model validation
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allen J.I., Holt J.T., Blackford J., Proctor R. Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: part 2. Chlorophyll-a, nutrients and SPM. J. Mar. Syst. 2007, 68:381-404.
Andersson P.M., Andersson L.S. Long term trends in the seas surrounding Sweden 2006, Part one - Nutrients. SMHI, Norrköping (DK), p. 235.
Baretta J.W., Ebenhöh W., Ruardij P. The European regional seas ecosystem model, a complex marine ecosystem model. Neth. J. Sea Res. 1995, 33:233-246.
Bates N.R. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J. Geophys. Res. 2007, 112:C09013.
Bellerby R.G.J., Olsen A., Furevik T., Anderson L.A. Response of the surface ocean CO2 system in the Nordic Seas and North Atlantic to climate change. Climate Variability in the Nordic Seas: Geophysical Monograph Series 2005, 189-198. AGU. H. Drange, T.M. Dokken, T. Furevik, R. Gerdes, W. Berger (Eds.).
Bellerby R.G.J., Schulz K.G., Riebesell U., Neill C., Nondal G., Heegaard E., Johannessen T., Brown K.R. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 2008, 5:1517-1527.
Blackford J.C. Predicting the impacts of ocean acidification: challenges from an ecosystem perspective. J. Mar. Syst. 2010, 81:12-18.
Blackford J.C., Gilbert F.J. pH variability and CO2 induced acidification in the North Sea. J. Mar. Syst. 2007, 64:229-241.
Blackford J.C., Allen J.I., Gilbert F.J. Ecosystem dynamics at six contrasting sites: a generic modelling study. J. Mar. Syst. 2004, 52:191-215.
Borges A.V., Frankignoulle M. Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. J. Mar. Syst. 1999, 19:251-266.
Borges A.V., Gypens N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 2010, 55:346-353.
Caldeira K., Wickett M.E. Anthropogenic carbon and ocean pH. Nature 2003, 425:365-365.
Dickson A.G. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Res. Part A 1981, 28:609-623.
Dickson A.G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15K. Deep Sea Res. Part A 1990, 37:755-766.
Dickson A.G. The carbon dioxide system in seawater: equilibrium chemistry and measurements. Guide to Best Practices for Ocean Acidification Research and Data Report 2010, Publications Office of the European Union, Luxembourg. U. Riebesell, V.J. Fabry, L. Hansson, J.P. Gattuso (Eds.).
Dickson A.G., Millero F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A 1987, 34:1733-1743.
Dickson A.G., Sabine C.L., Christian J.R. Guide to Best Practices for Ocean Co2 Measurements Special Publication 3 2007, 191. PICES.
Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A. Ocean acidification: the other CO 2 problem. Ann. Rev. Mar. Sci. 2009, 1:169-192.
Dore J.E., Lukas R., Sadler D.W., Church M.J., Karl D.M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. 2009, 106:12235-12240.
Fabry V.J., Seibel B.A., Feely R.A., Orr J.C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65:414-432.
Feely R.A., Doney S.C., Cooley S.R. Ocean acidification: present conditions and future changes in a high-CO 2 world. Oceanography 2009, 22:36-47.
Geider R.J., MacIntyre H.L., Kana T.M. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 1997, 148:187-200.
Gypens N., Lacroix G., Lancelot C., Borges A.V. Seasonal and inter-annual variability of air-sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Prog. Oceanogr. 2011, 88:59-77.
Hjalmarsson S., Wesslander K., Anderson L.G., Omstedt A., Perttilä M., Mintrop L. Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Cont. Shelf Res. 2008, 28:593-601.
Holt J.T., James I.D. An s coordinate density evolving model of the northwest European continental shelf 1, model description and density structure. J. Geophys. Res. 2001, 106.
Holt J.T., Allen J.I., Proctor R., Gilbert F. Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: part 1 model overview and assessment of the hydrodynamics. J. Mar. Syst. 2005, 57:167-188.
Holt J., Wakelin S., Huthnance J. Down-welling circulation of the northwest European continental shelf: a driving mechanism for the continental shelf carbon pump. Geophys. Res. Lett. 2009, 36:L14602.
Hoppe C.J.M., Langer G., Rokitta S.D., Wolf-Gladrow D.A., Rost B. On CO2 pertubation experiments: over-determination of carbonate chemistry reveals inconsistencies. Biogeosci. Discuss. 2010, 7:1707-1726.
Ingri N., Kakolowicz W., Sillén L.G., Warnqvist B. High-speed computers as a supplement to graphical methods-V: Haltafall, a general program for calculating the composition of equilibrium mixtures. Talanta 1967, 14:1261-1286.
Jørgensen B.B., Bang M., Blackburn T.H. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Mar. Ecol. Prog. Ser. 1990, 59:39-54.
Kim H.-C., Lee K. Significant contribution of dissolved organic matter to seawater alkalinity. Geophys. Res. Lett. 2009, 36:L20603.
Kroeker K.J., Kordas R.L., Crim R.N., Singh G.G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 2010, 13:1419-1434.
Lenhart H.-J., Mills D.K., Baretta-Bekker H., van Leeuwen S.M., der Molen J.v., Baretta J.W., Blaas M., Desmit X., Kühn W., Lacroix G., Los H.J., Ménesguen A., Neves R., Proctor R., Ruardij P., Skogen M.D., Vanhoutte-Brunier A., Villars M.T., Wakelin S.L. Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. J. Mar. Syst. 2010, 81:148-170.
Lewis E., Wallace D. Program developed for CO 2 system calculations 1998, ORNL/CDIAC.
Lewis K., Allen J.I., Richardson A.J., Holt J.T. Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: part3, validation with continuous plankton recorder data. J. Mar. Syst. 2006, 63:209-224.
Liu J., Weinbauer M.G., Maier C., Dai M., Gattuso J.P. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 2010, 61:291-305.
McElligott S., Byrne R.H., Lee K., Wanninkhof R., Millero F.J., Feely R.A. Discrete water column measurements of CO2 fugacity and pHT in seawater: a comparison of direct measurements and thermodynamic calculations. Mar. Chem. 1998, 60:63-73.
Mehrbach C., Culberson C.H., Hawley J.E., Pytkowicz R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18:897-907.
Millero F.J. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 1995, 59:661-677.
Millero F.J., Byrne R.H., Wanninkhof R., Feely R., Clayton T., Murphy P., Lamb M.F. The internal consistency of CO 2 measurements in the equatorial Pacific. Mar. Chem. 1993, 44:269-280.
Millero F.J., Lee K., Roche M. Distribution of alkalinity in the surface waters of the major oceans. Mar. Chem. 1998, 60:111-130.
Millero F.J., Pierrot D., Lee K., Wanninkhof R., Feely R., Sabine C.L., Key R.M., Takahashi T. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res. I Oceanogr. Res. Pap. 2002, 49:1705-1723.
Muller F.L.L., Bleie B. Estimating the organic acid contribution to coastal seawater alkalinity by potentiometric titrations in a closed cell. Anal. Chim. Acta 2008, 619:183-191.
Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models part I - a discussion of principles. J. Hydrol. 1970, 10:282-290.
Orr J.C., Fabry V.J., Aumont O., Bopp L., Doney S.C., Feely R.A., Gnanadesikan A., Gruber N., Ishida A., Joos F., Key R.M., Lindsay K., Maier-Reimer E., Matear R., Monfray P., Mouchet A., Najjar R.G., Plattner G.-K., Rodgers K.B., Sabine C.L., Sarmiento J.L., Schlitzer R., Slater R.D., Totterdell I.J., Weirig M.-F., Yamanaka Y., Yool A. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437:681-686.
OSPAR Report of the modelling workshop on eutrophication issues. Ospar report, Den Haag 1996, 86.
Pätsch J., Lenhart H.-J. Daily Loads of Nutrients, Total Alkalinity, Dissolved Inorganic Carbon and Dissolved Organic Carbon of the European Continental Rivers for the Years 1977-2002. Berichte aus dem Zentrum für Meeres- und Klimaforschung, Reihe B, Ozeanographie 2004, 48. 159 pp.
Pörtner H. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Mar. Ecol. Prog. Ser. 2008, 373:203-217.
Proctor R., James I.D. A fine-resolution 3D model of the Southern North Sea. J. Mar. Syst. 1996, 8:285-295.
Raymond P.A., Oh N.-H., Turner R.E., Broussard W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 2008, 451:449-452.
Robbins L.L., Hansen M.E., Kleypas J.A., Meylan S.C. CO2calc-a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological Survey Open-File Report 2010, 17.
Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., Bullister J.L., Wanninkhof R., Wong C.S., Wallace D.W.R., Tilbrook B., Millero F.J., Peng T.-H., Kozyr A., Ono T., Rios A.F. The oceanic sink for anthropogenic CO2. Science 2004, 305:367-371.
Santana-Casiano J.M., González-Dávila M., Rueda M.-J., Llinás O., González-Dávila E.-F. The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Global Biogeochem. Cycles 2007, 21:GB1015.
Santos I.R., Glud R.N., Maher D., Erler D., Eyre B.D. Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophys. Res. Lett. 2010, 38:L03604.
Shutler J.D., Smyth T.J., Saux-Picart S., Wakelin S.L., Hyder P., Orekhov P., Grant M.G., Tilstone G.H., Allen J.I. Evaluating the ability of a hydrodynamic ecosystem model to capture inter- and intra-annual spatial characteristics of chlorophyll-a in the north east Atlantic. J. Mar. Syst. 2011, 88:169-182.
Smith G., Haines K. Evaluation of the S(T) assimilation method with the Argo dataset. Q. J. R. Meteorol. Soc. 2009, 135:739-756. 10.1002/qj.395.
Smyth T.J., Moore G.F., Hirata T., Aiken J. Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment. Appl. Opt. 2006, 45:8116-8131.
T.R.Society Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 2005, 60. The royal society. T.R. Society (Ed.).
Steinacher M., Joos F., Frölicher T.L., Plattner G.K., Doney S.C. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 2009, 6:515-533.
Suykens K., Schmidt S., Delille B., Harlay J., Chou L., De Bodt C., Fagel N., Borges A.V. Benthic remineralization in the northwest European continental margin (northern Bay of Biscay). Cont. Shelf Res. 2011, 31:644-658.
Thomas H., Schneider B. The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J. Mar. Syst. 1999, 22:53-67.
Thomas H., Bozec Y., Elkalay K., de Baar H.J.W. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 2004, 304:1005-1008.
Thomas H., Bozec Y., de Baar H.J.W., Elkalay K., Frankignoulle M., Schiettecatte L.S., Kattner G., Borges A.V. The carbon budget of the North Sea. Biogeosciences 2005, 2:87-96.
Thomas H., Friederike Prowe A.E., van Heuven S., Bozec Y., de Baar H.J.W., Schiettecatte L.-S., Suykens K., Koné M., Borges A.V., Lima I.D., Doney S.C. Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean. Global Biogeochem. Cycles 2007, 21:GB4001.
Thomas H., Schiettecatte L.S., Suykens K., Koné Y.J.M., Shadwick E.H., Prowe A.E.F., Bozec Y., de Baar H.J.W., Borges A.V. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 2009, 6:267-274.
Uppström L.R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res.Oceanogr. Abstr. 1974, 21:161-162.
Wakelin S., Holt J., Proctor R. The influence of initial conditions and open boundary conditions on shelf circulation in a 3D ocean-shelf model of the North East Atlantic. Ocean Dyn. 2009, 59:67-81.
Wakelin, S.L., Holt, J.T., Blackford, J.C., Allen, J.I., Butenschön, M., Artioli, Y., in press. Modeling the carbon fluxes of the northwest European continental shelf: validation and budgets. J. Geophys. Res. http://dx.doi.org/10.1029/2011JC007402.
Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 1974, 2:203-215.
Zeebe R.E., Wolf-Gradow D. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes 2001, Elsevier Science Publishers.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.