Reference : Reciprocating expander for an exhaust heat recovery Rankine cycle for a passenger car...
Scientific journals : Article
Engineering, computing & technology : Mechanical engineering
Reciprocating expander for an exhaust heat recovery Rankine cycle for a passenger car application
Glavatskaya, Yulia mailto [ > > ]
Podevin, Pierre mailto [ > > ]
Lemort, Vincent mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques >]
Shonda, Osoko mailto [ > > ]
Descombes, Geroges mailto [ > > ]
[en] Rankine cycle ; heat recovery ; heat exchanger ; automotive engine
[en] Nowadays, on average, two thirds of the fuel energy consumed by an engine is wasted through the exhaust gases and the cooling liquid. The recovery of this energy would enable a substantial reduction in fuel consumption. One solution is to integrate a heat recovery system based on a steam Rankine cycle. The key component in such a system is the expander, which has a strong impact on the system’s performance. A survey of different expander technologies leads us to select the reciprocating expander as the most promising one for an automotive application. This paper therefore proposes a steady-state semi-empirical model of the expander device developed under the EES (Engineering Equation Solver) environment. The ambient and mechanical losses as well as internal leakage were taken into account by the model. By exploiting the expander manufacturer data, all the parameters of the expander model were identified. The model computes the mass flow rate, the power output delivered and the exhaust enthalpy of the steam. The maximum deviation between predictions and measurement data is 4.7 %. A performance study of the expander is carried out and shows that the isentropic efficiency is quite high and increases with the expander rotary speed. The mechanical efficiency depends on mechanical losses which are quite high, approximately 90%. The volumetric efficiency was also evaluated.
Researchers ; Professionals ; Students

File(s) associated to this reference

Fulltext file(s):

Restricted access
Glavatskaya_papier_V5.pdfPublisher postprint295.94 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.