Contribution to collective works (Parts of books)
Decision tree pruning using an additive information quality measure
Wehenkel, Louis
1993In Bouchon-Meunier, B; Valverde, L; Yager, R (Eds.) Uncertainty in Intelligent Systems
 

Files


Full Text
pruning-93.pdf
Author postprint (792.88 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Decision trees; Machine Learning; Pruning
Abstract :
[en] An additive quality measure based on information theory is introduced for the inductive inference of decision trees. It takes into account both the information content and the complexity of a tree, combined so as to evaluate the tree on the basis of its learning sample. The additivity of the quality measure with respect to the decomposition of a tree into subtrees, allows to formulate an efficient recursive backward pruning algorithm to maximize the quality. Simulation results are provided on the ground of a real life problem related to electric power system operation and a synthetic digit recognition problem.
Disciplines :
Computer science
Author, co-author :
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Decision tree pruning using an additive information quality measure
Publication date :
1993
Main work title :
Uncertainty in Intelligent Systems
Editor :
Bouchon-Meunier, B
Valverde, L
Yager, R
Publisher :
Elsevier-North Holland
Pages :
397-411
Available on ORBi :
since 26 May 2012

Statistics


Number of views
65 (4 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi