Abstract :
[en] In the corpus luteum (CL), blood vessels develop, stabilize, and regress. This process depends on the ratio of pro-and antiangiogenic factors, which change during the ovarian cycle. The present study focuses on the possible roles of 23,000 (23K) prolactin (PRL) in the bovine CL and its antiangiogenic NH2-terminal fragments after extracellular cleavage by cathepsin D (Cath D). PRL RNA and protein were demonstrated in the CL tissue, in luteal endothelial cells, and in steroidogenic cells. Cath D was detected in CL tissue, cell extracts, and corresponding cell supernatants. In the intact CL, 23K PRL levels decreased gradually, whereas Cath D levels concomitantly increased between early and late luteal stages. In vitro, PRL cleavage occurred in the presence of acidified homogenates of CL tissue, cells, and corresponding cell supernatants. Similar fragments were obtained with purified Cath D, and their appearance was inhibited by pepstatin A. The aspartic protease specific substrate MOCAc-GKPILF similar to FRLK(Dnp)-D-R-NH2 was cleaved by CL cell supernatants, providing further evidence for Cath D activity. The 16,000 PRL inhibited proliferation of luteal endothelial cells accompanied by an increase in cleaved caspase-3. In conclusion, 1) the bovine CL is able to produce PRL and to process it into antiangiogenic fragments by Cath D activity and 2) PRL cleavage might mediate angioregression during luteolysis.
Disciplines :
Endocrinology, metabolism & nutrition
Anatomy (cytology, histology, embryology...) & physiology
Scopus citations®
without self-citations
23