Abstract :
[en] This paper addresses image annotation, i.e. labelling pixels of an image with a class among a finite set of predefined classes. We propose a new method which extracts a sample of subwindows from a set of annotated images in order to train a subwindow annotation model by using the extremely randomized trees ensemble method appropriately extended to handle high-dimensional output spaces. The annotation of a pixel of an unseen image is done by aggregating the annotations of its subwindows containing this pixel. The proposed method is compared to a more basic approach predicting the class of a pixel from a single window centered on that pixel and to other state-of-the-art image annotation methods. In terms of accuracy, the proposed method significantly outperforms the basic method and shows good performances with respect to the state-of-the-art, while being more generic, conceptually simpler, and of higher computational efficiency than these latter.
Scopus citations®
without self-citations
39